Рентгеновские лучи история открытия применение презентация. Презентация на тему: Рентгеновские лучи. Контроль за тепловым состоянием объектов

ВПАКЕНОРАВИДЫТРЛБЬГЮИЗЛУЧЕНИЯЧАВФРИЕТОРГШЬИНФРАКРАСНОЕОТЫЛНШВРГДЖБЖУЛЬТРАФИОЛЕТОВОЕРОКУАВФМОНШТРЕНТРЕНОВСКОЕСЯНГР .


Виды излучений: инфракрасное, ультрафиолетовое, рентгеновское

Урок физики в 11 классе

Учитель: Власова О.В.

НОУ СОШ №47 ОАО «РЖД»

п. Инголь Красноярского края


Видимый спектр

400ТГц 800ТГц

760нм 380нм


История открытия инфракрасного излучения

Английский астроном и физик

Вильям Гершель.


История открытия

За красной полосой видимого температура термометра повышается.


  • Атомы и молекулы вещества.
  • Все тела при любой температуре.

Источники инфракрасного излучения

Солнце.

Лампы накаливания.


Волновой и частотный диапазон инфракрасного излучения

  • Длина волны

λ = 8*10 -7 – 2*10 -3 м.

  • Частота

υ= 3*10 11 – 4*10 14 Гц.


Свойства инфракрасного излучения

  • Невидимо.
  • Производит химическое действие на фотопластинки.
  • Вода и водяные пары не прозрачны.
  • Поглощаясь веществом, нагревает его.

Биологическое действие

В режиме высоких температур опасно для глаз, может привести к повреждению зрения или слепоте.

Средства защиты:

специальные инфракрасные очки.


Инфракрасный обогреватель

Тепловизор

Термограмма


Применение инфракрасного излучения

В приборах ночного видения:

  • биноклях;
  • очках;
  • прицелах для стрелкового оружия;
  • ночных фото и видеокамерах.

Тепловизор - устройство для наблюдения за распределением температуры исследуемой поверхности.

Применение ИК излучения

Термограмма - изображение в инфракрасных лучах, показывающее картину распределения температурных полей .


Инфракрасное излучение в медицине

Термограммы используют в медицине для диагностики заболеваний.


Применение инфракрасного излучения в тепловизорах

Контроль за тепловым состоянием объектов.


Инфракрасное излучение в строительстве

Проверка качества строительных материалов и утеплителей .



Применение инфракрасного излучения

Дистанционное управление.


Общая протяжённость волоконно-оптических линий связи составляет более 52 тысяч километров.


Применение инфракрасного излучения на железной дороге

Предоставление света в волоконно-оптические системы связи инфракрасными лазерами.


На железнодорожном транспорте применяются

одно-, двух- и трёх кабельные способы организации линий связи. Оптические кабели содержат

4, 8 и 16 волокон.


Волоконное – оптическая система связи

Одновременная передача

10 миллионов телефонных разговоров и

1 миллиона видеосигналов.


Волоконное – оптическая система связи

Время жизни волокна, превышает 25 лет.



Применение инфракрасного излучения на железной дороге

Управление подвижным составом из центра диспетчерского управления перевозками.



История открытия

Немецкий физик Иоганн Вильгельм Риттер.

Английский ученый

У. Волластон.


Источники УФ излучения

  • Солнце, звезды.
  • Высокотемпературная плазма.
  • Твердые тела с

температурой

выше 1000 0 С.

  • Все тела нагретые

свыше 3000 0 С.

  • Кварцевые лампы.
  • Электрическая дуга.

Волновой и частотный диапазон ультрафиолетового излучения

  • Длина волны

λ = 10 -8 – 4*10 -7 м.

  • Частота

υ= 8*10 14 – 3*10 15 Гц.


Свойства ультрафиолетового излучения

  • Невидимо.
  • Все свойства электромагнитных волн (отражение, интерференция, дифракция и другие).
  • Ионизирует воздух.
  • Кварц прозрачен, стекло – нет.

Биологическое действие

  • Убивает микроорганизмы.
  • В небольших дозах способствует образованию витаминов группы Д, росту и укреплению организма.
  • Загар.
  • В больших дозах вызывает изменение в развитии клеток и обмене веществ, ожог кожи, поражение глаз.

Способы защиты:

стеклянные очки и крем от загара.


Особенности ультрафиолетового излучения

С увеличением высоты на каждые 1000 м

уровень ультрафиолета

возрастает на 12 %.


Применение Ультрафиолетового излучения

Создание светящихся красок.

Детектор валют.

Загар.

Изготовление печатей.


в медицине

Бактерицидные лампы и облучатели.

Лазерная биомедицина.

Дезинфекция.

В косметологии – солярийные лампы.


в Пищевой промышленности

Стерилизация (обеззараживание) воды, воздуха и различных поверхностей.


Применение Ультрафиолетового излучения в Криминалистике

В приборах для обнаружения следов взрывчатых веществ.


в Полиграфии

Производство печатей и штампов.


Для защиты денежных знаков

  • Защита банковских карт и денежных знаков от подделки.
  • Детектор валют.



Срок службы лампы накаливания не более 1000часов.

Световая отдача 10-100 лм/Вт.


Применение ультрафиолетового излучения на железной дороге

Срок службы светодиодов

50000 часов

и более.

Световая отдача превышает

120 лм/Вт и постоянно растет.


Применение ультрафиолетового излучения на железной дороге

Излучатель

с малым температурным сдвигом по длине волны и большим сроком жизни.



История открытия

Немецкий физик Вильгельм Рентген.

Удостоен

Нобелевской премии.


Источники рентгеновского излучения

  • Свободные электроны движущиеся с большим ускорением.
  • Электроны внутренних оболочек атомов, изменяющие свои состояния.
  • Звезды и галактики.
  • Радиоактивный распад ядер.
  • Лазер .
  • Рентгеновская трубка.

Волновой и частотный диапазон рентгеновского излучения

  • Длина волны

λ = 10 -8 – 10 -12 м.

  • Частота

υ= 3 . 10 16 – 3 . 10 20 Гц.


Свойства рентгеновского излучения

  • Невидимо.
  • Все свойства электромагнитных волн (отражение, интерференция, дифракция и другие).
  • Большая проникающая способность.
  • Сильное биологическое действие.
  • Высокая химическая активность.
  • Вызывает у некоторых веществ свечение – флюоресценцию.

Биологическое действие

  • Является ионизирующим.
  • Вызывает лучевую болезнь, лучевой ожог и злокачественные опухоли.


В медицине

Диагностика

Рентгенотерапия




  • Дефектоскопия.
  • Рентгеноструктурный анализ.



ОБЩИЕ

  • Все ЭМВ одной физической природы.
  • Возникают при ускоренном движении электрических зарядов.

Всем ЭМВ присущи свойства: интерференция, дифракция, отражение, поляризация, преломление, поглощение.

Распространяются в вакууме со скоростью 300 000 км/с.


СВОЙСТВА ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ

РАЗЛИЧИЯ

С увеличением частоты происходит:

  • Уменьшение длины волны.

Увеличение энергии излучения.

Более слабое поглощение веществом.

Увеличение проникающей способности.

Более сильное проявление квантовых свойств.

Усиление вредного влияния на живые организмы.


Ультрафиолетовое

излучение

излучение

Инфракрасное

излучение

Радиоволны

Гамма-излучение

Ускоренно движущийся

Открытие рентгеновских лучей Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген умел наблюдать, умел замечать новое там, где многие ученые до него не обнаруживали ничего примечательного. Этот особый дар помог ему сделать замечательное открытие. В конце XIX века всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа этих лучей еще не была с достоверностью установлена. Известно было лишь, что эти лучи берут начало на катоде трубки. Занявшись исследованием катодных лучей, Рентген скоро заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу. После этого ему удалось наблюдать еще одно очень поразившее его явление. Бумажный экран, смоченный раствором платиносинеродистого бария, начинал светиться, если им обертывалась разрядная трубка. Причем когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Открытие рентгеновских лучей Ученый понял, что при работе разрядной трубки возникает какоето неизвестное ранее сильно проникающее излучение. Он назвал его Х-лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи» . Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом. Последующие опыты показали, что Х-лучи возникают при торможении быстрых электронов любым препятствием, в частности металлическими электродами.

Свойства рентгеновских лучей Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от какихлибо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.

Свойства рентгеновских лучей Сразу же возникло предположение, что рентгеновские лучи - это электромагнитные волны, которые излучаются при резком торможении электронов. В отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей рентгеновские лучи имеют гораздо меньшую длину волны. Их длина волны тем меньше, чем больше энергия электронов, сталкивающихся с препятствием. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались именно с малой длиной волны. Но эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.

Дифракция рентгеновских лучей Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию - явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось. Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала для того, чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10 -8 см, поскольку таков размер самих атомов. А что если рентгеновские лучи имеют примерно такую же длину полны? Тогда остается единственная возможность - использовать кристаллы. Они представляют собой упорядоченные структуры, в которых расстояния между отдельными атомами по порядку величины равны размеру самих атомов, т. е. 10 -8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если длина их близка к размерам атомов.

Дифракция рентгеновских лучей И вот узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями. Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис. 50). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла. Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома (10 -8 см).

Применение рентгеновских лучей Рентгеновские лучи нашли себе много очень важных практических применений. В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний. Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве - структуру кристаллов. Сделать это для неорганических кристаллических веществ оказалось не очень сложно. Но с помощью рентгеноструктурного анализа удается расшифровать строение сложнейших органических соединений, включая белки. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов.

«Рентгеновские лучи» Гуликян Гамлет

Открытие рентгеновских лучей Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген умел наблюдать, умел замечать новое там, где многие ученые до него не обнаруживали ничего примечательного. Этот особый дар помог ему сделать замечательное открытие. В конце XIX века всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа этих лучей еще не была с достоверностью установлена. Известно было лишь, что эти лучи берут начало на катоде трубки. Занявшись исследованием катодных лучей, Рентген скоро заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу.

Открытие рентгеновских лучей Ученый понял, что при работе разрядной трубки возникает какое-то неизвестное ранее сильно проникающее излучение. Он назвал его Х -лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи». Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом.

Свойства рентгеновских лучей Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от каких-либо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.

Свойства рентгеновских лучей Сразу же возникло предположение, что рентгеновские лучи - это электромагнитные волны, которые излучаются при резком торможении электронов. В отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей рентгеновские лучи имеют гораздо меньшую длину волны. Их длина волны тем меньше, чем больше энергия электронов, сталкивающихся с препятствием.

Дифракция рентгеновских лучей Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию - явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось. Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала для того, чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10-8 см, поскольку таков размер самих атомов. А что если рентгеновские лучи имеют примерно такую же длину полны? Тогда остается единственная возможность - использовать кристаллы. Они представляют собой упорядоченные структуры, в которых расстояния между отдельными атомами по порядку величины равны размеру самих атомов, т. е. 10-8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если длина их близка к размерам атомов.

Дифракция рентгеновских лучей И вот узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями. Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис. 50). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла. Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома (10-8 см).

Применение рентгеновских лучей Рентгеновские лучи нашли себе много очень важных практических применений. В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний. Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве - структуру кристаллов. Сделать это для неорганических кристаллических веществ оказалось не очень сложно. Но с помощью рентгеноструктурного анализа удается расшифровать строение сложнейших органических соединений, включая белки. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов.

Устройство рентгеновской трубки В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. На рисунке 51 изображена упрощенная схема электронной рентгеновской трубки. Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2 . При этом рождаются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.

Вильгельм Конрад Рентген ()


Открытие Рентгена Закрыв трубку чехлом из черного картона и, выключив свет, но не выключив индуктор питающий трубку, Рентген заметил свечение экрана из синеродистогобария. Тщательное исследование показало Рентгену, что этот род лучей, заставляющих светится экран (флюоресцировать), не относится ни к инфракрасным, ни к ультрафиолетовым лучам. Для краткости он назвал их X-ЛУЧИ С помощью этих лучей Рентген провел первое рентгеноскопическое исследование человеческого тела


Схематическое изображение рентгеновской трубки. X – рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения


С в о й с т в а Фотографическое действие Фотографическое действие Интерференция Интерференция Дифракция Дифракция Большая проникающая способность Большая проникающая способность Скорость в вакууме км/с Скорость в вакууме км/с


РЕНТГЕНОГРАММА, зафиксированное на фотопленке изображение объекта, возникающее при взаимодействии рентгеновских лучей (их поглощении, отражении, дифракции) с веществом. РЕНТГЕНОКОНТРАСТНЫЕ СРЕДСТВА, различные химические вещества, которые при введении в организм улучшают изображение исследуемого Объекта (увеличивая или уменьшая поглощение рентгеновских лучей и создавая контрастность рентгеновского изображения). Наряду с «тяжелыми» (сульфат бария, препараты иода) применяются «легкие» рентгеноконтрастные средства (воздух, кислород и др.). РЕНТГЕНОЛОГИЯ, область медицины, изучающая применение рентгеновского излучения для исследования строения и функций органов и систем, рентгенодиагностики заболеваний. РЕНТГЕНОТЕРАПИЯ, применение рентгеновского излучения для лечения опухолевых и других заболеваний; вид лучевой терапии. РЕНТГЕНОГРАФИЯ, метод рентгенодиагностики, заключающийся в получении Фиксированного рентгеновского изображения объекта на фотоматериалы П р и м е н е н и е









12





Брызгалёв Кирилл

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Презентация на тему «Рентгеновские лучи» Брызгалёв Кирилл 11 «А» 2012 год

Открытие рентгеновских лучей Рентгеновские лучи были открыты в 1895 г. немецким физиком Вильгельмом Рентгеном. Рентген умел наблюдать, умел замечать новое там, где многие ученые до него не обнаруживали ничего примечательного. Этот особый дар помог ему сделать замечательное открытие. В конце XIX века всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа этих лучей еще не была с достоверностью установлена. Известно было лишь, что эти лучи берут начало на катоде трубки. Занявшись исследованием катодных лучей, Рентген скоро заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу. После этого ему удалось наблюдать еще одно очень поразившее его явление. Бумажный экран, смоченный раствором платиносинеродистого бария, начинал светиться, если им обертывалась разрядная трубка. Причем когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.

Открытие рентгеновских лучей Ученый понял, что при работе разрядной трубки возникает какое-то неизвестное ранее сильно проникающее излучение. Он назвал его Х -лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи». Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом. Последующие опыты показали, что Х -лучи возникают при торможении быстрых электронов любым препятствием, в частности металлическими электродами.

Свойства рентгеновских лучей Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от каких-либо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.

Свойства рентгеновских лучей Сразу же возникло предположение, что рентгеновские лучи - это электромагнитные волны, которые излучаются при резком торможении электронов. В отличие от световых лучей видимого участка спектра и ультрафиолетовых лучей рентгеновские лучи имеют гораздо меньшую длину волны. Их длина волны тем меньше, чем больше энергия электронов, сталкивающихся с препятствием. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались именно с малой длиной волны. Но эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.

Дифракция рентгеновских лучей Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию - явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось. Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала для того, чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10 -8 см, поскольку таков размер самих атомов. А что если рентгеновские лучи имеют примерно такую же длину полны? Тогда остается единственная возможность - использовать кристаллы. Они представляют собой упорядоченные структуры, в которых расстояния между отдельными атомами по порядку величины равны размеру самих атомов, т. е. 10 -8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если длина их близка к размерам атомов.

Дифракция рентгеновских лучей И вот узкий пучок рентгеновских лучей был направлен на кристалл, за которым была расположена фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями. Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис. 50). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла. Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома (10 -8 см).

Применение рентгеновских лучей Рентгеновские лучи нашли себе много очень важных практических применений. В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний. Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве - структуру кристаллов. Сделать это для неорганических кристаллических веществ оказалось не очень сложно. Но с помощью рентгеноструктурного анализа удается расшифровать строение сложнейших органических соединений, включая белки. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов.

Применение рентгеновских лучей

Устройство рентгеновской трубки В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками. На рисунке 51 изображена упрощенная схема электронной рентгеновской трубки. Катод 1 представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2 . При этом рождаются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10 -5 мм рт. ст.

Устройство рентгеновской трубки В мощных рентгеновских трубках анод охлаждается проточной водой, так как при торможении электронов выделяется большое количество теплоты. В полезное излучение превращается лишь около 3% энергии электронов. Рентгеновские лучи имеют длины волн в диапазоне от 10 -9 до 10 -10 м. Они обладают большой проникающей способностью и используются в медицине, а также для исследования структуры кристаллов и сложных органических молекул.

Литература: http://images.yandex.ru/yandsearch?text=%D1%80%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B5%20%D0%BB%D1%83%D1%87%D0%B8&stype=image&noreask=1&lr=213 http://www.fizika9kl.pm298.ru/g3_u6.htm http://images.yandex.ru/yandsearch?p=1&text=%D0%A1%D0%B2%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%B0+%D1%80%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D1%85+%D0%BB%D1%83%D1%87%D0%B5%D0%B9&rpt=image http://images.yandex.ru/yandsearch?text=%D0%9F%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5+%D1%80%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D1%85+%D0%BB%D1%83%D1%87%D0%B5%D0%B9&rpt=image&img_url=pics.livejournal.com%2Frus_uk%2Fpic%2F000hk7pq http://images.yandex.ru/yandsearch?p=407&text=%D0%A3%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE%20%D1%80%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B9%20%D1%82%D1%80%D1%83%D0%B1%D0%BA%D0%B8&img_url=climatblog.info%2Fuploads%2Fposts%2F2011-01-19%2Fpolnyj-effekt_1.jpg&rpt=simage