Свойства этилена. Применение этилена. Свойства этилена Химические свойства и применение этилена

этилен формула, этиленгликоль
Этиле́н (по ИЮПАК: этен ) - органическое химическое соединение, описываемое формулой С2H4. Является простейшим алкеном (олефином), изологом этана. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде (25,6 мл в 100 мл воды при 0 °C), этаноле (359 мл в тех же условиях). Хорошо растворяется в диэтиловом эфире и углеводородах. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном. Этилен - самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3 % в год. Этилен обладает наркотическим действием. Класс опасности - четвёртый.

  • 1 Получение
  • 2 Структура производства
  • 3 Применение
  • 4 Электронное и пространственное строение молекулы
  • 5 Основные химические свойства
  • 6 Биологическая роль
  • 7 Примечания
  • 8 Литература
  • 9 Ссылки

Получение

Этилен стали широко применять в качестве мономера перед Второй мировой войной в связи с необходимостью получения высококачественного изоляционного материала, способного заменить поливинилхлорид. После разработки метода полимеризации этилена под высоким давлением и изучения диэлектрических свойств получаемого полиэтилена началось его производство сначала в Великобритании, а позднее и в других странах.

Основным промышленным методом получения этилена является пиролиз жидких дистиллятов нефти или низших насыщенных углеводородов. Реакция проводится в трубчатых печах при 800-950°С и давлении 0,3 МПа. При использовании в качестве сырья прямогонного бензина выход этилена составляет примерно 30%. Одновременно с этиленом образуется также значительное количество жидких углеводородов, в том числе и ароматических. При пиролизе газойля выход этилена составляет примерно 15-25%. Наибольший выход этилена - до 50% - достигается при использовании в качестве сырья насыщенных углеводородов: этана, пропана и бутана. Их пиролиз проводят в присутствии водяного пара.

При выпуске с производства, при товарно-учетных операциях, при проверке его на соответствие нормативно-технической документации производится отбор проб этилена по процедуре, описанной в ГОСТ 24975.0-89 "Этилен и пропилен. Методы отбора проб". Отбор пробы этилена может производится и в газообразном и в сжиженном виде в специальные пробоотборники по ГОСТ 14921.

Промышленно получаемый в России этилен должен соответствовать требованиям, изложенным в ГОСТ 25070-2013 "Этилен. Технические условия".

Структура производства

В настоящее время в структуре производства этилена 64% приходится на крупнотоннажные установки пиролиза, ~ 17% - на малотоннажные установки газового пиролиза,~ 11% составляет пиролиз бензина и 8% падает на пиролиз этана.

Применение

Этилен является ведущим продуктом основного органического синтеза и применяется для получения следующих соединений (перечислены в алфавитном порядке):

  • Винилацетат;
  • Дихлорэтан / винилхлорид (3-е место, 12 % всего объёма);
  • Окись этилена (2-е место, 14-15 % всего объёма);
  • Полиэтилен (1-е место, до 60 % всего объёма);
  • Стирол;
  • Уксусная кислота;
  • Этилбензол;
  • Этиленгликоль;
  • Этиловый спирт.

Этилен в смеси с кислородом использовался в медицине для наркоза вплоть до середины 80-х годов ХХ века в СССР и на ближнем Востоке. Этилен является фитогормоном практически у всех растений, среди прочего отвечает за опадание иголок у хвойных.

Электронное и пространственное строение молекулы

Атомы углерода находятся во втором валентном состоянии (sр2-гибридизация). результате, на плоскости под углом 120° образуются три гибридных облака, которые образуют три σ-связи с углеродом и двумя атомами водорода; p-электрон, который не участвовал в гибридизации, образует в перпендикулярной плоскости π-связь с р-электроном соседнего атома углерода. Так образуется двойная связь между атомами углерода. Молекула имеет плоскостное строение.

Основные химические свойства

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

  • Галогенирование:
CH2=CH2 + Br2 → CH2Br-CH2Br Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.
  • Гидрирование:
CH2=CH2 + H - H → CH3 - CH3 (под действием Ni)
  • Гидрогалогенирование:
CH2=CH2 + HBr → CH3 - CH2Br
  • Гидратация:
CH2=CH2 + HOH → CH3CH2OH (под действием катализатора) Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.
  • Окисление:
Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуется этиленгликоль. Уравнение реакции: 3CH2=CH2 + 2KMnO4 + 4H2O → 3HOH2C - CH2OH + 2MnO2 + 2KOH
  • Горение:
C2H4 + 3O2 → 2CO2 + 2H2O
  • Полимеризация (получение полиэтилена):
nCH2=CH2 → (-CH2-CH2-)n
  • Димеризация (В.Ш.Фельдблюм. Димеризация и диспропорционирование олефинов. М.: Химия, 1978

Биологическая роль

Сигнальный каскад этилена у растений. Этилен легко проникает сквозь клеточную мембрану и связывается с рецепторами, расположенными на эндоплазматическом ретикулуме. Рецепторы после активации высвобождают связанный EIN2. Это активирует каскад передачи сигнала, который приводит к активации экспрессии определённых генов и в конечном итоге к включению специфического ответа на этилен у данного растения в данной фазе созревания. Активированные участки ДНК считываются в мРНК, которая, в свою очередь, в рибосомах считывается в функционирующий белок фермента, который катализирует биосинтез этилена, тем самым продукция этилена в ответ на изначальный этиленовый же сигнал повышается до определённого уровня, запуская каскад реакций созревания растения.

Этилен у растений является своеобразным растительным гормоном, обладающим очень широким спектром биологических эффектов. Он действует в ничтожных, следовых количествах в течение всей жизни растения, стимулируя и регулируя процесс созревания плодов (в частности, фруктов), распускание бутонов (процесс цветения), опадание листьев, рост корневой системы растений.

В коммерческом сборе плодов и фруктов используют специальные комнаты или камеры для дозревания плодов, в атмосферу которых этилен впрыскивается из специальных каталитических генераторов, производящих газообразный этилен из жидкого этанола. Обычно для стимулирования дозревания плодов используется концентрация газообразного этилена в атмосфере камеры от 500 до 2000 ppm в течение 24-48 часов. При более высокой температуре воздуха и более высокой концентрации этилена в воздухе дозревание плодов идёт быстрее. Важно, однако, при этом обеспечивать контроль содержания углекислого газа в атмосфере камеры, поскольку высокотемпературное созревание (при температуре выше 20 градусов Цельсия) или созревание при высокой концентрации этилена в воздухе камеры приводит к резкому повышению выделения углекислого газа быстро созревающими плодами, порой до 10 % углекислоты в воздухе спустя 24 часа от начала дозревания, что может привести к углекислотному отравлению как работников, убирающих уже дозревшие плоды, так и самих фруктов.

Этилен использовался для стимулирования созревания плодов ещё в Древнем Египте. Древние египтяне намеренно царапали или слегка мяли, отбивали финики, фиги и другие плоды с целью стимулировать их созревание (повреждение тканей стимулирует образование этилена тканями растений). Древние китайцы сжигали деревянные ароматические палочки или ароматические свечи в закрытых помещениях с целью стимулировать созревание персиков (при сгорании свеч или дерева выделяется не только углекислый газ, но и недоокисленные промежуточные продукты горения, в том числе и этилен). 1864 году было обнаружено, что утечка природного газа из уличных фонарей вызывает торможение роста близлежащих растений в длину, их скручивание, аномальное утолщение стеблей и корней и ускоренное созревание плодов. 1901 году русский учёный Дмитрий Нелюбов показал, что активным компонентом природного газа, вызывающим эти изменения, является не основной его компонент, метан, а присутствующий в нём в малых количествах этилен. Позднее в 1917 году Сара Дубт доказала, что этилен стимулирует преждевременное опадание листьев. Однако только в 1934 году Гейн обнаружил, что сами растения синтезируют эндогенный этилен. 1935 году Крокер предположил, что этилен является растительным гормоном, ответственным за физиологическое регулирование созревания плодов, а также за старение вегетативных тканей растения, опадание листьев и торможение роста.

Цикл Янга

Цикл биосинтеза этилена начинается с превращения аминокислоты метионина в S-аденозил-метионин (SAMe) при помощи фермента метионин-аденозилтрансферазы. Затем S-аденозил-метионин превращается в 1-аминоциклопропан-1-карбоксиловую кислоту (АЦК, ACC) при помощи фермента 1-аминоциклопропан-1-карбоксилат-синтетазы (АЦК-синтетазы). Активность АЦК-синтетазы лимитирует скорость всего цикла, поэтому регуляция активности этого фермента является ключевой в регуляции биосинтеза этилена у растений. Последняя стадия биосинтеза этилена требует наличия кислорода и происходит при действии фермента аминоциклопропанкарбоксилат-оксидазы (АЦК-оксидазы), ранее известной как этиленобразующий фермент. Биосинтез этилена у растений индуцируется как экзогенным, так и эндогенным этиленом (положительная обратная связь). Активность АЦК-синтетазы и, соответственно, образование этилена повышается также при высоких уровнях ауксинов, в особенности индолуксусной кислоты, и цитокининов.

Этиленовый сигнал у растений воспринимается минимум пятью различными семействами трансмембранных рецепторов, представляющих собой димеры белков. Известен, в частности, рецептор этилена ETR1 у арабидопсиса (Arabidopsis). Гены, кодирующие рецепторы для этилена, были клонированы у арабидопсиса и затем у томата. Этиленовые рецепторы кодируются множеством генов как в геноме арабидопсиса, так и в геноме томатов. Мутации в любом из семейства генов, которое состоит из пяти типов этиленовых рецепторов у арабидопсиса и минимум из шести типов рецепторов у томата, могут привести к нечувствительности растений к этилену и нарушениям процессов созревания, роста и увядания. Последовательности ДНК, характерные для генов этиленовых рецепторов, были обнаружены также у многих других видов растений. Более того, этиленсвязывающий белок был найден даже у цианобактерий.

Неблагоприятные внешние факторы, такие, как недостаточное содержание кислорода в атмосфере, наводнение, засуха, заморозки, механическое повреждение (ранение) растения, нападение патогенных микроорганизмов, грибков или насекомых, могут вызывать повышенное образование этилена в тканях растений. Так, например, при наводнении корни растения страдают от избытка воды и недостатка кислорода (гипоксии), что приводит к биосинтезу в них 1-аминоциклопропан-1-карбоксиловой кислоты. АЦК затем транспортируется по проводящим путям в стеблях вверх, до листьев, и в листьях окисляется до этилена. Образовавшийся этилен способствует эпинастическим движениям, приводящим к механическому стряхиванию воды с листьев, а также увяданию и опаданию листьев, лепестков цветков и плодов, что позволяет растению одновременно и избавиться от избытка воды в организме, и сократить потребность в кислороде за счёт сокращения общей массы тканей.

Небольшие количества эндогенного этилена также образуются в клетках животных, включая человека, в процессе перекисного окисления липидов. Некоторое количество эндогенного этилена затем окисляется до этиленоксида, который обладает способностью алкилировать ДНК и белки, в том числе гемоглобин (формируя специфический аддукт с N-терминальным валином гемоглобина - N-гидроксиэтил-валин). Эндогенный этиленоксид также может алкилировать гуаниновые основания ДНК, что приводит к образованию аддукта 7-(2-гидроксиэтил)-гуанина, и является одной из причин присущего всем живым существам риска эндогенного канцерогенеза. Эндогенный этиленоксид также является мутагеном. С другой стороны, существует гипотеза, что если бы не образование в организме небольших количеств эндогенного этилена и соответственно этиленоксида, то скорость возникновения спонтанных мутаций и соответственно скорость эволюции была бы значительно ниже.

Примечания

  1. Devanney Michael T. Ethylene (англ.). SRI Consulting (September 2009). Архивировано из первоисточника 21 августа 2011.
  2. Ethylene (англ.). WP Report. SRI Consulting (January 2010). Архивировано из первоисточника 21 августа 2011.
  3. Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (УТВ. ГЛАВНЫМ ГОСУДАРСТВЕННЫМ САНИТАРНЫМ ВРАЧОМ РФ 30.03.2003)
  4. «РОСТ И РА3ВИТИЕ РАСТЕНИЙ» В. В. Чуб
  5. «Delaying Christmas tree needle loss»
  6. Хомченко Г.П. §16.6. Этилен и его гомологи // Химия для поступающих в вузы. - 2-е изд. - М.: Высшая школа, 1993. - С. 345. - 447 с. - ISBN 5-06-002965-4.
  7. 1 2 3 Lin, Z.; Zhong, S.; Grierson, D. (2009). «Recent advances in ethylene research». J. Exp. Bot. 60 (12): 3311–36. DOI:10.1093/jxb/erp204. PMID 19567479.
  8. Ethylene and Fruit Ripening / J Plant Growth Regul (2007) 26:143–159 doi:10.1007/s00344-007-9002-y (англ.)
  9. External Link to More on Ethylene Gassing and Carbon Dioxide Control. ne-postharvest.com (недоступная ссылка с 06-06-2015 (13 дней))
  10. Neljubov D. (1901). «Uber die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen». Beih Bot Zentralbl 10 : 128–139.
  11. Doubt, Sarah L. (1917). «The Response of Plants to Illuminating Gas». Botanical Gazette 63 (3): 209–224. DOI:10.1086/332006.
  12. Gane R. (1934). «Production of ethylene by some fruits». Nature 134 (3400): 1008. DOI:10.1038/1341008a0. Bibcode: 1934Natur.134.1008G.
  13. Crocker W, Hitchcock AE, Zimmerman PW. (1935) «Similarities in the effects of ethlyene and the plant auxins». Contrib. Boyce Thompson Inst. 7. 231-48. Auxins Cytokinins IAA Growth substances, Ethylene
  14. Yang, S. F., and Hoffman N. E. (1984). «Ethylene biosynthesis and its regulation in higher plants». Ann. Rev. Plant Physiol. 35 : 155–89. DOI:10.1146/annurev.pp.35.060184.001103.
  15. Bleecker A. B., Esch J. J., Hall A. E., Rodríguez F. I., Binder B. M. The ethylene-receptor family from Arabidopsis: structure and function. (англ.) // Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - 1998. - Vol. 353. - № 1374. - P. 1405–1412. - DOI:10.1098/rstb.1998.0295 - PMID 9800203. исправить
  16. Explaining Epinasty. planthormones.inf
  17. (1992) «Pharmacokinetics of ethylene in man; body burden with ethylene oxide and hydroxyethylation of hemoglobin due to endogenous and environmental ethylene.». Arch Toxicol. 66 (3): 157-163. PMID 1303633.
  18. (1997) «A note on the physiological background of the ethylene oxide adduct 7-(2-hydroxyethyl)guanine in DNA from human blood.». Arch Toxicol. 71 (11): 719-721. PMID 9363847.
  19. (May 15, 2000) «A physiological toxicokinetic model for exogenous and endogenous ethylene and ethylene oxide in rat, mouse, and human: formation of 2-hydroxyethyl adducts with hemoglobin and DNA.». Toxicol Appl Pharmacol. 165 (1): 1-26. PMID 10814549.
  20. (Sep 2000) «Carcinogenicity and genotoxicity of ethylene oxide: new aspects and recent advances.». Crit Rev Toxicol. 30 (5): 595-608. PMID 11055837.

Литература

  • Горбов А. И.,. Этилен // Энциклопедический словарь Брокгауза и Ефрона: в 86 т. (82 т. и 4 доп.). - СПб., 1890-1907.
  • ГОСТ 24975.0-89 Этилен и пропилен. Методы отбора проб
  • ГОСТ 25070-87 Этилен. Технические условия

Ссылки

  • Безуглова О. С. Этилен. Удобрения и стимуляторы роста. Проверено 22 февраля 2015.

этилен, этилен алу, этилен горит реакция, этилен из хлорэтана, этилен формула, этилен химия формула, этилен это, этиленвинилацетат, этиленгликоль, этиленовые углеводороды

Этилен Информацию О




ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ КРЕКИНГ АЛКАНОВ АЛКАН АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t= C t= C С 10 Н 22 C 5 H 12 + C 5 H 10 С 10 Н 22 C 5 H 12 + C 5 H 10 декан пентан пентен декан пентан пентен








ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕПРИМЕР: спиртовой спиртовой H H раствор H H раствор Н-С–С-Н+KOHН 2 С=СН 2 +KCl+H 2 O Н Cl этен Н Cl этен хлорэтан (этилен) хлорэтан (этилен)










РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH 2 =CH 2 (-CH 2 -CH 2 -)n этилен полиэтилен (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH 2 -CH 2 - структурное звено


Применение этилена СвойствоПрименениеПример 1. ПолимеризацияПроизводство полиэтилена, пластмасс 2. Галогенирование Получение растворителей 3. Гидрогалогени- рование Для: местная анестезия, получения растворите- лей, в с/х для обеззараживания зернохранилищ


СвойствоПрименениеПример 4. Гидратация Получение этилового спирта, используемого как растворитель, анти-септик в медицине, в производстве синтетического каучука 5. Окисление раствором KMnO 4 Получение антифризов, тормозных жидкостей, в производстве пластмасс 6. Особое свойство этилена: Этилен ускоряет созревание плодов

В среде овощеводов, которые занимаются выращиванием и поставками сельскохозяйственных культур профессионально, принято собирать плоды, не прошедшие стадию дозревания. Такой подход позволяет дольше сохранять овощи и фрукты и без проблем перевозить их на большие расстояния. Поскольку зеленые бананы или, например, помидоры вряд ли будут пользоваться серьезным спросом у рядового потребителя, а естественное дозревание может занять продолжительное время, для ускорения процесса применяются газы этилен и ацетилен . На первый взгляд такой подход может вызвать недоумение, но вникнув в физиологию процесса становится понятно, почему современные овощеводы активно пользуются подобной технологией.

Газовый гормон созревания для овощей и фруктов

Влияние специфических газов на скорость созревания культур первым заметил российский ботаник Дмитрий Нелюбов, который в начале 20 в. определил некую зависимость «спелости» лимонов от атмосферы в помещении. Оказалось, что в складах со старой системой отопления, которая не отличалась высокой герметичностью и пропускала в атмосферу пар, лимоны созревали гораздо быстрее. Путем несложного анализа было выяснено, что такой эффект достигался благодаря этилену и ацетилену, которые находились в составе исходящего из труб пара.

Поначалу подобное открытие было лишено должного внимания со стороны предпринимателей, только редкие новаторы пытались насытить свои хранилища газом этиленом для улучшения производительности. Лишь в середине 20 в. «газовый гормон» для овощей и фруктов был взят на вооружение достаточно крупными предприятиями.

Для реализации технологии обычно применяются баллоны, вентильная система которых позволяет достаточно точно настроить выход газа и добиться необходимой концентрации в помещении. Очень важно, что при этом из хранилища вытесняется обычный воздух, который содержит кислород - главный окислитель для сельскохозяйственных продуктов. Кстати, технология замещения кислорода другим веществом активно применяется для увеличения срока хранения не только плодов, но и других пищевых продуктов - мяса, рыбы, сыров и т.п. Для этой цели применяется азот и углекислота, о чем подробно .

Почему газ этилен называют «банановым» газом

Итак, этиленовая среда позволяет ускорить процесс дозревания овощей и фруктов. Но почему это происходит? Дело в том что в процессе созревания многие культуры выделяют специальное вещество, коим как раз является этилен, который, попадая в окружающую среду, влияет не только на сам источник выделения, но и на его соседей.

так яблоки помогают при дозревании

Каждый вид плода выделяет разное количество гормона созревания. Больше всего в этом плане отличаются:

  • яблоки;
  • груши;
  • абрикосы;
  • бананы.

Последние попадают в нашу страну, преодолевая значительное расстояние, поэтому их не транспортируют в спелом виде. Чтобы кожура банана приобрела свой естественный ярко-желтый окрас, многие предприниматели помещают их в специальную камеру, которая наполняется этиленом. Цикл такой обработки в среднем составляет 24 часа, после чего бананы получают своеобразный толчок к ускоренному созреванию. Интересно, что без подобной процедуры, любимый фрукт многих детей и взрослых будет очень долго находиться в полузрелом состоянии. Поэтому «банановый» газ в этом случае просто необходим.

отправляют на дозревание

Способы создания необходимой концентрации газа в камере хранения плодов

Выше уже отмечалось, что для обеспечения необходимой концентрации этилена/ацетилена в помещении для хранения овощей и фруктов обычно применяются газовые баллоны. В целях экономии некоторые овощеводы иногда прибегают к другому методу. В помещении с плодами кладется кусок карбида кальция, на который капает вода с периодичностью 2-3 капли/час. В результате химической реакции выделяется ацетилен, постепенно наполняя внутреннюю атмосферу.

Подобный «дедовский» способ, хоть и привлекает своей простотой, больше характерен для частных домохозяйств, поскольку не позволяет добиться точной концентрации газа в помещении. Поэтому на средних и крупных предприятиях, где важно для каждой культуры рассчитать необходимое количество «газового гормона», зачастую применяются баллонные установки.

Правильное формирование газовой среды при хранении и производстве пищевых продуктов играет огромную роль, позволяя улучшить внешний вид товара, его вкусовые качества и повысить срок годности. Больше о способах упаковки и хранении продуктов читайте в цикле статей о пищевых газовых смесях, а заказать эту продукцию можно , выбрав необходимый газ и при желании получив консультацию о его правильной эксплуатации.


Гормональная система регуляции является одной из важнейших систем у растений и включает в себя фитогормоны. Фитогормоны это соединения, с помощью которых осуществляется взаимодействие клеток, тканей и органов и которые в малых количествах необходимы для запуска и регуляции физиологических и морфогенетических программ. Гормоны растений сравнительно низкомолекулярные органические вещества. Они образуются в различных тканях и органах и действуют в очень низких концентрациях порядка 10 -13 -10 -5 моль/л.

Все фитогормоны делятся на стимуляторы и ингибиторы. Ингибиторы (от лат. «Inhibeo» – останавливаю, сдерживаю) в биологии, природные и синтетические вещества, угнетающие активность ферментов (как в организме, так и в бесклеточных системах); различаются по характеру действия, специфичности и др. свойствам. К ингибиторам роста относится этилен. Ряд соединений оказывает на растение сходное влияние, но уступают ему в эффективности. Этилен единственный газообразный регулятор роста растений.

Газ этилен (С2Н4) справедливо относят к гормонам растений, так как он синтезируется в растениях и в крайне низких концентрациях регулирует их рост, активирует созревание плодов, вызывает старение листьев и цветков, опадение листьев и плодов, участвует в ответе растений на различные стрессовые факторы и в регуляции многих других важных событий в жизни растения (Кулаева, 1995). Этилен, точнее, этиленпродуценты - соединения, разрушение которых сопровождается выделением этилена, имеют широкое применение в практике сельского хозяйства. Все это определяет большое внимание биохимиков, физиологов, генетиков, молекулярных биологов и практиков к изучению этилена.

В последние годы большие успехи достигнуты в получении и изучении мутантных растений, нечувствительных к этилену. Эти мутанты обеспечили прогресс в выделении генов, отвечающих за восприятие и передачу этиленового сигнала в растениях, и помогли частично расшифровать молекулярные пути, по которым сигнал проходит, вызывая включение или подавление определенных физиологических программ. Этот успех и побудил автора написать статью об этилене. Ее целью является рассмотрение регуляторной роли этилена в растениях, его практического применения, особенностей его биосинтеза, а также новейших данных о механизме действия этого фитогормона.

История открытия этилена

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с «горючим воздухом», т. е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Трусвик, Бонд и Лауеренбург и описали под названием «маслородного газа», так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости – хлористого этилена («масло голландских химиков»).

Изучение свойств этилена, его производных и гомологов началось с середины XIX века. Начало практического использования этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно создания Бутлеровым теории химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структуру этилена.

В 1901 году Дмитрий Николаевич Нелюбов выращивал горох в лаборатории, В Санкт-Петербурге, но семена давали искривленные, укороченные проростки, у которых верхушка была согнута крючком и не сгибалась. В теплице и на свежем воздухе проростки были ровные, рослые, и верхушка на свету быстро распрямляла крючок. Нелюбов предложил, что фактор, вызывающий физиологический эффект, находится в воздухе лаборатории.

В то время помещения освещали газом. В уличных фонарях горел тот же газ, и давно было замечено, что при аварии в газопроводе стоящие рядом с местом утечки газа деревья преждевременно желтеют и сбрасывают листья.

Осветительный газ содержал разнообразные органические вещества. Чтобы удалить примесь газа, Нелюбов пропускал его через разогретую трубку с оксидом меди. В «очищенном» воздухе проростки гороха развивались нормально. Для того чтобы выяснить, какое именно вещество вызывает ответ проростков, Нелюбов добавлял различные компоненты светильного газа по очереди, и обнаружил, что добавка этилена вызывает:

1) замедление роста в длину и утолщение проростка,

2) «не разгибающуюся» апикальную петельку,

3) изменение ориентации проростка в пространстве.

Эта физиологическая реакция проростков была названа тройным ответом на этилен. Горох оказался настолько чувствительным к этилену, что его стали использовать в биотестах для определения низких концентрациях этого газа. Вскоре было обнаружено, что этилен вызывает и другие эффекты: листопад, созревание плодов и т.д. Оказалось, что этилен способны синтезировать сами растения, т.е. этилен является фитогормоном.

Физиологическая роль этилена

Свойства этилена

Этилен представляет собой бесцветный газ, обладающий слабым, едва ощутимым запахом. Он плохо растворим в воде (при 0 0 в 100г воды растворяется 25,6 мл этилена), горит светящимся пламенем, образует с воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при температуре выше 350 0 этилен частично разлагается на метан и ацетилен. При температуре около 1200 0 диссоциирует главным образом на ацетиле и водород.

В природных газах (за исключением вулканических) этилен не встречается. Он образуется главным образом при пирогенетическом разложении природных соединений, содержащих органические вещества.

В очень низких концентрациях, порядка 0,001-0,1 мкл/л он способен тормозить и изменять характер роста растений, ускорять созревание плодов. Этилен синтезируется в бактериях, грибах, низших и высших растениях, причем в больших количествах. Далеко не все организмы способны к синтезу этилена. Так, из исследованных 228 видов микроскопических грибов лишь 25% выделяют этилен. Организмы контролируют скорость синтеза этилена. Тем самым регулируется его концентрация, кроме того избыток этилена может свободно диффундировать в окружающую среду. Скорость образования этилена различна у разных органов и систем. Образование этилена возрастает при старении и опадении листьев и плодов. Оно тормозится недостатком кислорода (у всех сельскохозяйственных растений, кроме риса) и может регулироваться температурой и светом. Влияет на синтез этилена и уровень СО 2 . Причем у разных растений углекислый газ может, как стимулировать, так и угнетать образование этилена.

Как показано в опытах Д.Н. Нелюбова, этилен угнетает рост стебля в длину и вызывает его утолщение. Впоследствии ученые выяснили, что это происходит за счет изменения направления роста клеток стебля, которому соответствует изменение ориентации элементов цитоскелета. Этилен подавляет рост корня, ускоряет старение, что хорошо прослеживается на листьях и цветках растений. Этилен ускоряет также созревание плодов, вызывает опадение листьев и плодов. Он индуцирует образование в черешке специального отделительного слоя клеток, по которому происходит отрыв листа от растения, а на месте отрыва вместо ранки остается индуцированный этиленом защитный слой клеток с опробковевшими стенками. Этот фитогормон влияет на пол цветков, вызывая образование женских цветков у растений, для которых характерны раздельные женские и мужские цветки, например у огурца, тыквы и кабачков.

Образование корней на стебле и формирование в стебле особой ткани - аэренхимы, по которой кислород поступает в корни, индуцируются этиленом. Это спасает растения в условиях кислородного голодания корней, в которое они попадают при затоплении почвы. Помимо этого этилен вызывает и другие изменения в растениях. Например, эпинастию, изменяющую угол наклона листа по отношению к стеблю (листья опускаются).

В ответах растений на различные повреждающие воздействия - механические, химические и биологические - также участвует этилен. Он вовлекается в ответ растений на атаку патогенов. Этилен включает системы защиты растений от патогенов. При этом он индуцирует синтез большого числа ферментов, например ферментов, разрушающих клеточную стенку грибов (хитиназы, специфические глюканазы), а также ферментов, участвующих в синтезе фитоалексинов - соединений, ядовитых для патогена.

При поранении растений происходят синтез и выделение этилена. Есть данные о том, что при объедании листьев древесных растений животными объеденное растение выделяет этилен и под его воздействием в листьях соседних растений могут синтезироваться вещества, делающие листья невкусными для животных.

Биосинтез этилена

Ключевым соединением для биосинтеза этилена в растениях является аминокислота метионин. При взаимодействии метионина с макроэргическим соединением АТФ возникает промежуточный продукт S-аденозилметионин, который далее превращается в 1-аминоциклопропан-1-карбоновую кислоту (АЦК) - непосредственный предшественник этилена в растениях. Затем АЦК в присутствии кислорода разлагается с образованием этилена, аммиака, муравьиной кислоты и СО2. Каждый этап катализируется определенным ферментом. Ключевым ферментом, на уровне которого регулируется биосинтез этилена, является АЦК-синтаза. АЦК-синтаза не синтезируется в клетках постоянно, а индуцируется индукторами - веществами, вызывающими ее синтез. Такие ферменты принято называть индуцибельными. Синтез АЦК-синтазы индуцируют высокие концентрации ауксина, молекулы - химические сигналы грибной инфекции, а также сам этилен. Синтез АЦК-синтазы идет до тех пор, пока присутствует индуктор. Затем синтез прекращается, а образованные молекулы фермента быстро разрушаются, так как период их полураспада составляет 20-30 мин. Это подчеркивает, как жестко растение контролирует синтез этилена на уровне образования и разрушения ключевого фермента биосинтеза АЦК-синтазы.

Существенно, что в геноме растений существует большое семейство генов АЦК-синтазы, которые различаются по своей регуляции: одни включаются на разных стадиях нормального развития растений, другие - при поранении, третьи - при действии патогена и т.д. Это обеспечивает многофакторную систему регуляции синтеза этилена в растениях. Гены АЦК-синтазы и АЦК-оксидазы привлекают большое внимание генных инженеров, так как модификация растений по этим генам позволяет регулировать синтез этилена и, следовательно, регулировать скорость созревания плодов. На этом пути американские генные инженеры получили трансгенные растения томатов с увеличенным на месяц сроком хранения плодов.

Следующий этап биосинтеза этилена сводится к окислению АЦК. Он кислородозависим и не протекает в условиях кислородного голодания (анаэробиоза). Такая ситуация возникает в корнях при затоплении почвы. Без кислорода подавляются дыхание корня, синтез АТФ и зависящие от нее процессы. Нарушается снабжение побегов водой, элементами минерального питания, гормонами (цитокининами) и другими продуктами жизнедеятельности корня. Все это грозит гибелью растений. И тут включается этиленовая система защиты. В условиях анаэробиоза превращение в корнях АЦК в этилен прекращается. АЦК поступает в составе пасоки - раствора, поступающего из корней в побеги, в надземные органы, где нет недостатка О2, и превращается там в этилен. Этилен индуцирует в побегах эпинастию - изменение угла наклона черешка к стеблю, в результате которого листья опускаются вниз, уходят от прямого действия солнечных лучей. При этом листья меньше нагреваются и меньше испаряют воды. Этилен индуцирует образование на стеблях корней, которые не выполняют поглощающей функции, но осуществляют специфические синтетические процессы, необходимые для нормального функционирования побега, в том числе восстанавливают снабжение надземных органов цитокининами. Кроме того, этилен индуцирует образование в стебле аэренхимы - ткани, по которой О2 попадает из стеблей в корни и обеспечивает их нормальную жизнедеятельность. Этот пример хорошо иллюстрирует, как этилен обеспечивает адаптацию растений к условиям кислородной недостаточности в зоне корней, возникающей при затоплении почвы.

При нормальном протекании жизни растений этилен активно синтезируется в созревающих плодах и стареющих листьях. Это понятно: он индуцирует созревание плодов, старение и опадение листьев. Однако высокий уровень синтеза этилена характерен также для меристематических тканей - зон клеточного деления. Это пока трудно объяснить. Синтез этилена в растениях вызывают высокие концентрации ауксина, что происходит на уровне индукции генов АЦК-синтазы. Синтезированный этилен подавляет реакции, вызываемые ауксином. Например, в определенном диапазоне концентраций ауксин активирует рост корня. Их превышение индуцирует синтез этилена, который подавляет рост корня. Таким образом, этилен включается в контроль растением действия ауксина по принципу обратной связи. Этилен выполняет такую же роль и в реакциях растений на высокие концентрации цитокининов.

Этилен как гормон механического стресса

Выделение этилена тесно связано с механическим воздействием на клетки растений. Возьмем пример ответа проростка гороха, который наблюдал Нелюбов. Пока росток не достигнет поверхности, нужно защищать нежные клетки верхушечной меристемы от повреждения. Поэтому происходит изгиб и образование апикальной петельки. Сквозь почву растет не меристема, а более прочный нижележащий участок.

Когда на пути проростка появляется механическое препятствие (камень), проросток выделяет больше этилена, рост в длину приостанавливается и начинается утолщение. Проросток стремится преодолеть препятствие, усилив давление. Если это удалось, концентрация этилена падает, и рост в длину восстанавливается. Но если препятствие слишком крупное, то продукция этилена еще больше усиливается. Проросток отклоняется от вертикали и огибает камешек.

В воздушной среде концентрация этилена падает, проростки разгибают апикальную меристему, и начинается развитие листьев.

Этилен и прикосновение

Вплоть до 1991 года у физиологов растений были достаточно отрывочные представления о том, как именно растения чувствуют прикосновение. Методом вычитания с-ДНК-библиотек было установлено, что опрыскивание растений Arabidopsis thaliana водой вызывает синтез новых матричных РНК - через 10-15 минут их уровень поднимался в сотни раз.

Опрыскивание является комплексным фактором: изменяется влажность воздуха, создается тень от водяных паров, и, наконец, листья подвергаются механической нагрузке. Каждый из факторов был исследован по отдельности. Выяснилось, что влажность не играет никакой роли, но если растение потереть стеклянной палочкой, оно почувствует это и через 10-15 минут ответит экспрессией новых м-РНК. Обнаруженные гены были обозначены как TCH1, TCH2, TCH3, TCH4, TCH5 (от английского touch - прикосновение).

Если, не прикасаясь к растению внезапно накрыть его черным колпаком, то в нем также повышается уровень TCH-матриц. Создание достаточно мощных звуковых эффектов не привело к желаемому результату: матричные РНК TCH в составе клеток не появились.

За что же отвечают гены, продукты которых появляются в клетках при прикосновении? Они оказались очень похожи на известные кальций-связывающие белки - кальмодулины. Эти белки вместе с Са 2+ активизируют работу цитоскелета и способствуют переходу из золя в гель многих структур в растительной клетке. Растения, которые часто беспокоили стеклянной палочкой, заметно отстают в росте, от тех к которым не прикасались, однако оказываются механически более прочными, закаленными.

Белковый продукт гена TCH 4 оказался ксилоглюкан-эндотрансгликозилазой. Синтез этого белка можно вызвать также брассиностероидами. Те же эффекты можно вызвать добавлением этилена. При этом также происходит синтез Са-связывающих TCH-белков.

Этилен и заживление ран

Многие растения образуют млечники, которые содержат латекс (натуральный каучук). Однако каучук не "застывает" внутри млечников (как и не сворачивается кровь в сосудах). Но стоит растение повредить, на поверхность выступает латекс, который быстро твердеет и закупоривает место повреждения. Латекс склеивает споры грибов и бактерий, застывает в ротовом аппарате насекомых или приклеивает их к капельке выступившего каучука.

О том, что заставляет латекс быстро твердеть при повреждении растения, долгое время ничего не знали бы, если бы не запросы сельского хозяйства. На плантациях гевеи затвердение латекса - вредный процесс: приходится заново делать насечки на стволах деревьев, подставлять сосуды для сбора каучука в новые места, что создает массу лишней работы.

Оказалось, что латекс застывает под действием этилена. Важную роль при этом играет минорный белок латекса - гевеин. С застыванием латекса можно до некоторой степени бороться, обрабатывая растения ингибиторами синтеза этилена. Наиболее известный ингибитор - ионы серебра, но есть и более дешевые. Таким образом, у растений-каучуконосов этилен способствует заживлению механических повреждений.

Кроме того, под действием этилена активизируется особая ткань раневая перидерма. Образуется пробковый камбий, который образует слой суберинизированной пробки, отделяющей здоровую (живую) ткань от больной (мертвой). Пробка высоко гидрофобная, что позволяет эффективно пресечь распространение грибов и бактерий, попавших в рану, предохраняет здоровую ткань от чрезмерного испарения.

Размеры и место образования раневой перидермы отличаются у разных растений. Так медуница образует раневую перидерму в нескольких миллиметрах от зоны повреждения (например, грибами). Участок листа, окруженный раневой перидермой, выпадает.

У фасоли активизируется раневая перидерма в основании листовой пластинки, и растение жертвует поврежденной частью сложного листа во имя безопасности целого растения.

Казалось бы, раневая перидерма может быть полезна лишь при нападении бактерий и грибов. Однако и при нападении насекомых и клещей она играет немаловажную роль. Под действием этилена происходит локальный "листопад" - поврежденный лист опадает на землю вместе с вредителем. Шансов вновь добраться до кроны у вредителей меньше. Защитный "листопад" наблюдается, например, у роз при нападении паутинного клеща.

Регуляция листопада в умеренных широтах

Этилен регулирует явление листопада. Эта реакция настолько впечатлила физиологов растений, что этилен иногда считают гормоном старения растений. Явление листопада - это не просто старение. Так, в тропиках отдельные листья живут 3-4 года (часто больше). Сокращение сроков жизни листа связано с защитной реакцией на механический стресс.

При опадании листьев образуется много открытых ранок в местах прикрепления. Чтобы лист отделился без вреда для целого растения, в его основании формируется отделительный слой. Его работа практически идентична работе раневой перидермы. Место будущего повреждения закрывается пробкой, вышележащая ткань разрыхляется и становится непрочной, лист опадает. Что бы разрыхлить клеточную стенку, в нее выделяются пектиназы. При расщеплении пектина высвобождаются физиологически активные вещества - олигосахарины, которые стимулируют дальнейшее размягчение клеточных стенок.

Листья, которые готовятся к листопаду, передают соединения азота и углеводы другим частям растения. Хлорофилл разрушается, и лист желтеет. В тканях накапливаются вредные вещества, которые будут удалены из растения листопадом.

Таким образом, явления листопада и защиты от повреждений тесно связаны. В случае листопада в умеренных широтах мы видим опережающую физиологическую реакцию. Зимой листья повреждаются морозом, на них падает снег, вызывая усиление механической нагрузки на ветки. Растение как бы "предусматривает" будущий механический стресс и заранее освобождается от листьев. Поэтому, не удивительно, что все процессы, связанные с потерей листьев в районах с холодной и снежной зимой, находятся под контролем этилена (Прохоров,1978).

Формирование и созревание плодов

Начало жизни плода лежит еще в цветке, точнее в завязи. На поверхности рыльца попадают пыльцевые зерна, они начинают прорастать и механически давят на проводниковую ткань столбика, что бы достичь семязачатков, спрятанных в глубине пестика. Естественно, что при прорастании пыльцы ткани столбика начинают выделять этилен.

Разные части цветка по-разному отвечают на сигнал этилена. Так, все органы, привлекавшие насекомых-опылителей, либо отмирают, либо меняют окраску. В считанные часы после опыления лепестки ипомеи теряют тургор и увядают. У листочков околоцветника лилии в основании активизируется отделительный слой, и они опадают (сравните с явлением листопада). У медуницы меняется рН (кислотность) вакуолярного сока и цветки из розовых превращаются в синие. У белокрыльника (Calla palustris) этилен вызывает изменение цвета покрывала соцветия с белого на зеленый. В дальнейшем растение использует покрывало как дополнительный источник фотоассимилятов для развивающихся плодов. Заметим, что в одних случаях этилен вызывает разрушение хлорофилла, пожелтение и опадание листьев, тогда как в других, способствует усилению фотосинтеза.

Тычинки при действии этилена увядают, а завязи начинают активно расти, привлекая новые питательные вещества.

Особенно важен этилен на последнем этапе созревания сочных плодов. Здесь "играют" практически все рассмотренные эффекты. Плод останавливается в росте (как и проросток, наткнувшийся на препятствие), клетки плода начинают выделять в апопласт пектиназы - плоды становятся мягкими. Кроме того, образуются физиологически активные фрагменты пектина - олигосахарины. В ножках плодов активизируется отделительный слой и образуется раневая перидерма (как при листопаде), меняется рН - плоды становятся менее кислыми, а так же меняется их окраска с зеленой на более желтую или красную (как у лепестков некоторых растений).

Заметим, что раньше других созревают и опадают поврежденные плоды. Механический стресс вызывают птицы, личинки насекомых или фитопатогенные грибы. Как в случае листьев, растение стремится отбросить некачественный плод, чтобы остальные плоды оказались по возможности здоровыми.

Созревание плодов под действием этилена - это такая же упреждающая физиологическая реакция, как листопад. Сочные плоды распространяются птицами и млекопитающими, которые повреждают плоды при поедании, и растение заранее продуцирует этилен.

Свойство ускорять созревание плодов было обнаружено у этилена давно, еще в 20-е годы и с тех пор его широко используют. При транспортировке важно, чтобы плоды оставались прочными и зелеными. Для этого их перевозят в проветриваемой таре, оберегая плоды от механических повреждений, вызывающих синтез этилена. Кроме того, биосинтез этилена замедляется при пониженной температуре и при высокой концентрации углекислоты в воздухе. В принципе можно было бы применять и ингибиторы биосинтеза этилена, если бы не их токсичность для человека. Единственное место применения ингибиторов - хранение срезанных цветов. В Голландии цветы ставят не в обычную воду, а в специальный раствор, который помимо минеральных солей, продуктов фотосинтеза и антисептиков содержат ингибиторы синтеза этилена. С помощью таких добавок торговцам удается сохранять букеты свежими в течении многих дней.

Чтобы этилен не образовывался в плодах, получают мутанты с нарушенным биосинтезом этилена. Уже получены сорта томатов, созданные на основе таких мутантов. Эти томаты можно очень долго хранить и перевозить на далекие расстояния. Незадолго до продажи их обрабатывают этиленом, и плоды быстро созревают. Однако, такая технология заметно снижает вкусовые качества плодов.

Существует поговорка, что одно гнилое яблоко портит, целую бочку. Это действительно так. Гнилое яблоко служит источником этилена, который вызывает размягчение тканей у остальных яблок. Более того, каждый плод начинает вырабатывать свой этилен по мере созревания и в бочке начинается "цепная реакция" производства этилена.



Яркий представитель непредельных углеводородов — этен (этилен). Физические свойства: бесцветный горючий газ, взрывоопасный в смеси с кислородом и воздухом. В значительных количествах этилен получают из нефти для последующего синтеза ценных органических веществ (одноатомных и двухатомных спиртов, полимеров, уксусной кислоты и других соединений).

этилена, sp 2 -гибридизация

Углеводороды, сходные по строению и свойствам с этеном, называются алкенами. Исторически закрепился еще один термин для этой группы — олефины. Общая формула C n H 2n отражает состав всего класса веществ. Первый его представитель — этилен, в молекуле которого атомы углерода образуют не три, а всего две õ-связи с водородом. Алкены — непредельные или ненасыщенные соединения, их формула C 2 H 4 . Смешиваются по форме и энергии только 2 p- и 1 s-электронное облако атома углерода, всего формируются три õ-связи. Это состояние называется sp2-гибридизацией. Четвертая валентность углерода сохраняется, в молекуле возникает π-связь. В структурной формуле особенность строения находит отражение. Но символы для обозначения разных типов связи на схемах обычно используются одинаковые — черточки или точки. Строение этилена определяет его активное взаимодействие с веществами разных классов. Присоединение воды и других частиц происходит благодаря разрыву непрочной π-связи. Освободившиеся валентности насыщаются за счет электронов кислорода, водорода, галогенов.

Этилен: физические свойства вещества

Этен при обычных условиях (нормальном атмосферном давлении и температуре 18°C) — бесцветный газ. Он обладает сладким (эфирным) запахом, его вдыхание оказывает наркотическое действие на человека. Затвердевает при -169,5°C, плавится при таких же температурных условиях. Кипит этен при -103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Этилен растворяется в эфире и ацетоне, значительно меньше — в воде и спирте. Округленная молярная масса вещества — 28 г/моль. Третий и четвертый представители гомологического ряда этена — тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение и свойства этилена

Немецкий химик Иоган Бехер случайно использовал в опытах с концентрированной серной кислотой. Так впервые был получен этен в лабораторных условиях (1680 год). В середине XIX века А.М. Бутлеров дал соединению название этилен. Физические свойства и также были описаны известным русским химиком. Бутлеров предложил структурную формулу, отражающую строение вещества. Способы его получения в лаборатории:

  1. Каталитическое гидрирование ацетилена.
  2. Дегидрогалогенирование хлорэтана в реакции с концентрированным спиртовым раствором сильного основания (щелочи) при нагревании.
  3. Отщепление воды от молекул этилового Проходит реакция в присутствии серной кислоты. Ее уравнение: Н2С-СН2-OH → Н2С=СН2 + Н2О

Промышленное получение:

  • переработка нефти — крекинг и пиролиз углеводородного сырья;
  • дегидрирование этана в присутствии катализатора. H 3 C-CH 3 → H 2 C=CH 2 + H 2

Строение этилена объясняет его типичные химические реакции — присоединение частиц атомами C, которые находятся при кратной связи:

  1. Галогенирование и гидрогалогенирование. Продуктами этих реакций являются галогенопроизводные.
  2. Гидрирование (насыщение этана.
  3. Окисление до двухатомного спирта этиленгликоля. Его формула: OH-H2C-CH2-OH.
  4. Полимеризация по схеме: n(H2C=CH2) → n(-H2C-CH2-).

Области применения этилена

При фракционной в больших объемах Физические свойства, строение, химическая природа вещества позволяют использовать его в производстве этилового спирта, галогенопроизводных, спиртов, оксида, уксусной кислоты и других соединений. Этен — мономер полиэтилена, а также исходное соединение для полистирола.

Дихлорэтан, который получают из этена и хлора, является хорошим растворителем, используется в производстве поливинилхлорида (ПВХ). Из полиэтилена низкого и высокого давления изготавливают пленку, трубы, посуду, из полистирола — футляры для CD-дисков и другие детали. ПВХ — это основа линолеума, непромокаемых плащей. В сельском хозяйстве этеном обрабатываются плоды перед уборкой урожая для ускорения созревания.