Изображение полученное космическим аппаратом. Фотографии планет, впервые сделанные космическими аппаратами. Физика цифровой фотографии

August 16th, 2016

Фотографии из космоса, публикуемые на сайте NASA и других космических агентств, часто привлекают к себе внимание тех, кто сомневается в их подлинности, — критики находят на изображениях следы редактирования, ретуширования или манипуляций с цветом. Так повелось еще со времен зарождения «лунного заговора», а теперь под подозрение попали снимки, сделанные не только американцами, но и европейцами, японцами, индийцами. Совместно с порталом N+1 разбираемся, зачем вообще обрабатывают космические изображения и могут ли они, несмотря на это, считаться подлинными.

Для того чтобы правильно оценивать качество космических снимков, которые мы видим в Сети, необходимо учитывать два важных фактора. Один из них связан с характером взаимодействия агентств и широкой публики, другой продиктован физическими законами.

Связи с общественностью

Космические снимки — одно из самых эффективных средств популяризации работы исследовательских миссий в ближнем и дальнем космосе. Однако далеко не все кадры сразу оказываются в распоряжении СМИ.

Изображения, полученные из космоса, можно условно разделить на три группы: «сырые» (raw), научные и публичные. Сырые, или исходные, файлы с космических аппаратов иногда бывают доступны всем желающим, а иногда нет. Например, изображения, полученные марсоходами Curiosity и Opportunity или спутником Сатурна Cassini , публикуются практически в режиме реального времени, так что любой желающий может увидеть их одновременно с учеными, изучающими Марс или Сатурн. Необработанные фотографии Земли с МКС выкладываются на отдельный сервер NASA . Космонавты заливают их тысячами, и ни у кого нет времени на их предобработку. Единственное, что добавляют к ним на Земле, это географическую привязку для облегчения поиска.

Обычно за ретушь критикуют публичные кадры, которые прилагаются к пресс-релизам NASA и других космических агентств, — ведь именно они попадаются на глаза пользователям интернета в первую очередь. И при желании там можно найти много чего. И манипуляции с цветом:


Фото посадочной платформы марсохода Spirit в видимом диапазоне света и с захватом ближнего инфракрасного.
(с) NASA/JPL/Cornell

И наложение нескольких снимков:


Восход Земли над лунным кратером Комптона.

И копипасту:


Фрагмент Blue Marble 2001
(c) NASA/Robert Simmon/MODIS/USGS EROS

И даже прямую ретушь, с затиранием некоторых фрагментов изображения:


Высветленный снимок GPN-2000-001137 экспедиции Apollo 17.
(с) NASA

Мотивация NASA в случае со всеми этими манипуляциями проста настолько, что ей готовы поверить далеко не все: так красивее.

Но ведь правда, бездонная чернота космоса выглядит более впечатляюще, когда ей не мешают мусор на объективе и заряженные частицы на пленке. Цветной кадр, и правда, привлекательнее черно-белого. Панорама из снимков лучше отдельных кадров. При этом важно, что в случае с NASA почти всегда можно найти исходные кадры и сравнить одно с другим. Например исходный вариант (AS17-134-20384) и вариант «для печати» (GPN-2000-001137) этого снимка с Apollo 17, который приводят как чуть ли не главное доказательство ретуширования лунных фотографий:


Сравнение кадров AS17-134-20384 и GPN-2000-001137
(с) NASA

Или найти «сэлфи-палку» марсохода, которая «пропала» при создании его автопортрета :


Снимки Curiosity от 14 января 2015, сол 868
(с) NASA/JPL-Caltech/MSSS

Физика цифровой фотографии

Как правило те, кто упрекает космические агентства за манипуляции с цветом, использование фильтров или публикацию черно-белых фотографий «в наш век прогресса цифровых технологий», не учитывают физические процессы получения цифровых изображений. Они полагают, что если смартфон или фотоаппарат сразу выдают цветные кадры, то космическому аппарату это тем более должно быть по плечу, и даже не догадываются, какие сложные операции необходимы, чтобы цветное изображение сразу попало на экран.

Поясним теорию цифрового фото: матрица цифрового аппарата — это, по сути, солнечная батарея. Есть свет — есть ток, нет света — нет тока. Только матрица представляет собой не единую батарею, а множество маленьких батарей — пикселей, с каждого из которых по отдельности считывается выдача тока. Оптика фокусирует свет на фотоматрицу, а электроника считывает интенсивность выделения энергии каждым пикселем. Из полученных данных строится изображение в оттенках серого — от нулевого тока в темноте до максимального на свету, то есть на выходе оно получается черно-белым. Чтобы сделать его цветным, необходимо применить цветные фильтры. Получается, как ни странно, что цветные фильтры присутствуют в каждом смартфоне и в каждой цифровой камере из ближайшего магазина! (Для кого-то эта информация банальна, но, по опыту автора, для многих она окажется новостью.) В случае с обычной фототехникой применяется чередование красных, зеленых и синих фильтров, которые поочередно накладываются на отдельные пиксели матрицы, — это так называемый фильтр Байера .


Фильтр байера наполовину состоит из зеленых пикселей, а красный и синий занимают по одной четверти площади.
(с) Wikimedia

Здесь повторим: навигационные камеры выдают черно-белые изображения потому, что такие файлы меньше весят, а также потому, что цвет там просто не нужен. Научные камеры позволяют извлекать информации о космосе больше, чем способен воспринимать глаз человека, и поэтому для них используется более широкий набор цветовых фильтров:


Матрица и барабан светофильтров инструмента OSIRIS на Rosetta
(с) MPS

Применение фильтра ближнего инфракрасного света, который не виден глазу, вместо красного привело к покраснению Марса на многих кадрах, ушедших в СМИ. Пояснение про инфракрасный диапазон перепечатали далеко не все, что породило отдельную дискуссию, которую мы также разбирали в материале «Какого цвета Марс».

Однако на марсоходе Curiosity стоит фильтр Байера, что позволяет ему снимать в цвете, привычном нашему глазу, хотя отдельный набор цветных фильтров к камере также прилагается.


(c) NASA/JPL-Caltech/MSSS

Применение отдельных фильтров удобнее с точки зрения выбора диапазонов света, в которых хочется посмотреть на объект. Но если этот объект движется быстро, то на снимках в разных диапазонах его положение меняется. На кадрах «Электро-Л» это было заметно на быстрых облаках, которые успевали сдвинуться за считанные секунды, пока спутник меняет фильтр. На Марсе подобное происходило при съемке закатов у марсохода Spirit и Opportunity — у них нет фильтра Байера:


Закат, снятый Spirit в 489 сол. Наложение снимков, снятых с фильтрами на 753 535 и 432 нанометров.
(с) NASA/JPL/Cornell

На Сатурне похожие трудности у Cassini:


Спутники Сатурна Титан (сзади) и Рея (впереди) на снимках Cassini
(с) NASA/JPL-Caltech/Space Science Institute

В точке Лагранжа с той же ситуацией сталкивается DSCOVR:


Транзит Луны по диску Земли на снимке DSCOVR 16 июля 2015 года.
(с) NASA/NOAA

Чтобы получить из этой съемки красивое фото, пригодное для распространения в СМИ, приходится поработать в редакторе изображений.

Есть еще один физический фактор, о котором знают далеко не все, — черно-белые снимки имеют более высокие разрешение и четкость по сравнению с цветными. Это так называемые панхроматические снимки, которые включают в себя всю световую информацию, попадающую в камеру, без отсечения каких-либо ее частей фильтрами. Поэтому многие «дальнобойные» камеры спутников снимают только в панхроме, что для нас означает черно-белые кадры. Такая камера LORRI установлена на New Horizons, камера NAC — на лунном спутнике LRO. Да по сути все телескопы снимают в панхроме, если только специально не применяют фильтры. («NASA скрывает истинный цвет Луны» — вот откуда это пошло.)

Мультиспектральная «цветная» камера, оборудованная фильтрами и имеющая гораздо меньшее разрешение, может прилагаться к панхроматической. При этом ее цветные снимки можно накладывать на панхроматические, в результате чего мы получим цветные снимки высокого разрешения.


Плутон на панхроматических и мультиспектральных снимках New Horizons
(с) NASA/JHU APL/Southwest Research Institute

Такой метод часто применяют при съемке Земли. Если знать об этом, то можно увидеть на некоторых кадрах типичный ореол, который оставляет размытый цветной кадр:


Композитный снимок Земли со спутника WorldView-2
(c) DigitalGlobe

Именно путем такого наложения создавался тот самый впечатляющий кадр Земли над Луной, что выше приведен как пример наложения разных снимков:


(с) NASA/Goddard/Arizona State University

Дополнительная обработка

Часто приходится прибегать к инструментам графических редакторов, когда надо почистить кадр перед публикацией. Представления о безупречности космической техники не всегда оправданны, поэтому мусор на космических камерах — дело распространенное. Например, камера MAHLI на марсоходе Curiosity просто загажена, иначе и не скажешь:


Фото Curiosity с помощью инструмента Mars Hand Lens Imager (MAHLI) в сол 1401
(с) NASA/JPL-Caltech/MSSS

Соринка в солнечном телескопе STEREO-B породила отдельный миф об инопланетной космической станции, постоянно летающей над северным полюсом Солнца:


(с) NASA/GSFC/JHU APL

Еще в космосе нередки заряженные частицы, которые оставляют свои следы на матрице в виде отдельных точек или полос. Чем дольше выдержка, тем больше остается следов, на кадрах появляется «снег», который не очень презентабельно смотрится в СМИ, поэтому его тоже стараются счистить (читай: «отфотошопить») перед публикацией:


(с) NASA/JPL-Caltech/Space Science Institute

Поэтому можно сказать: да, NASA фотошопит снимки из космоса. ESA фотошопит. Роскосмос фотошопит. ISRO фотошопит. JAXA фотошопит... Не фотошопит только Национальное космическое агентство Замбии. Так что если кого-то не устраивают изображения NASA, то всегда можно воспользоваться их снимками космоса без каких-либо признаков обработки.

Вот таким ученые впервые «увидели» Марс

51 год назад, 14 июля 1965 года, космическая станция Mariner 4 приблизилась к Марсу и впервые за всю историю человечества сделала несколько снимков другой планеты. Для фотографирования пришлось использовать большую аналоговую камеру, которая была смонтирована в нижней части аппарата. После того, как камера фотографировала, изображение отправлялось в виде цифрового кода на Землю. После получения этого кода на Земле его нужно было пропустить через декодировщик. Работа этого устройства занимала несколько часов.

Но это были первые в истории человечества изображения Марса, и сотрудники NASA не хотели ждать. Поэтому было решено декодировать изображение своими силами, вручную.

Поскольку код оттенков черного и белого цветов для получаемого кода был известен, специалисты приняли решение раскрасить полученное сообщение карандашами, с цветами от желтого до коричневого. Поэтому получилось так, что первое в мире изображение Марса было не фотографией, а раскрашенным вручную эскизом.


Увеличенный участок изображения

На снимке показан участок поверхности Марса вблизи экватора. С этого ракурса изображение выглядит так, словно его получили, находясь на поверхности Красной планеты. Но на самом деле «склон» в середине кадра - это округлый край планеты. Вот черно-белое изображение, которое дает понять реальное положение аппарата.

Mariner 4 - автоматическая межпланетная станция. Она предназначалась для проведения научных исследований Марса с пролётной траектории, передачи информации о межпланетном пространстве и о пространстве около Марса. Предусматривалось получение снимков поверхности и проведение эксперимента по радио-затмению планетой сигнала со станции для получения информации об атмосфере и ионосфере. Головная организация по проектированию, изготовлению и испытаниям - Лаборатория реактивного движения NASA (Jet Propulsion Laboratory или JPL). Разработка отдельных систем выполнялась различными промышленными организациями и высшими учебными заведениями.


Так выглядели Mariner 3 и 4. Внизу - не пушка, как может показаться, а видеокамера (Изображение: NASA)

Этот аппарат стал первым космическим аппаратом, который сделал снимки другой планеты с близкого расстояния и передал их на Землю. Mariner 4 сделал 21 полную фотографию Марса и 1 неполную. Неполная фотография была получена из-за того, что Марс закрыл аппарат, радиосвязь с Землей прервалась. Это произошло с 14 на 15 июля.

Как и в случае с Венерой, снимки атмосферы и поверхности которой человечество смогло получить через несколько лет после сближения Mariner 4 с Красной планетой, фотографии Марса позволили перейти от домыслов о строении поверхности к фактам и теориям. Миф о каналах на поверхности Марса , невольными авторами которого являются астрономы Джованни Скиапарелли и Персиваль Лоуэлл, существовал очень долгое время. Он послужил причиной того, что ученые и обыватели долгое время считали каналы творением рук марсиан. Скиапарелли, наблюдая за Марсом, назвал обнаруженные линии итальянским словом «canali», которое обозначает любые протоки (как естественного так и искусственного происхождения), и может переводиться на английский как «channels», «canals» или «grooves» (каналы, искусственные каналы или борозды). При переводе его работ на английский использовалось слово «canals», употребляемое в английском языке для обозначения каналов искусственного происхождения. Сам он в последствии не уточнял, что именно имел в виду. Но уже мало кто подвергал сомнению обитаемость Марса: кто-то ведь должен был создать эти каналы планетарного масштаба.


Созданная в 1962 году специалистами военно-воздушных сил США карта Марса демонстрировала наличие каналов на его поверхности. Эта карта использовалась NASA для планирования маршрута Mariner. Прямоугольниками отмечены места, сфотографированные камерами Mariner 4

Но аппарат не увидел никаких каналов - ни рукотворных, ни природных. Фотографии и данные, предоставленные инструментами станции показали, что Марс - это сухая и холодная планета с температурой поверхности ниже нуля по Цельсию. Планету пронизывает космическое излучение - у нее нет ионосферы для защиты от частиц высокой энергии. Mariner 4 не нашел никаких следов присутствия цивилизации на Марсе. Поэтому в 1965 году миф о наличии каналов на поверхности планеты удалось развеять.

Сейчас, спустя полвека, у человека достаточно инструментов для изучения Марса. На его поверхности трудятся Curiosity и Oppotunity. На орбите находится сразу несколько космических аппаратов, включая Mars Reconnaissance Orbiter и Mangalyaan. Все это позволяет тщательно изучать Марс, делая интересные открытия. Например, орбитальные аппараты помогли узнать о периодическом появлении жидкой воды на поверхности Красной планеты.

Начало этому изучению положил Mariner 4. Его 50-летний юбилей совпал с датой пролета станции New Horizons мимо Плутона.

Всего полвека назад ученые разрисовывали полученные из космоса закодированные изображения карандашами.А сейчас астрономы получают детальные изображения удаленных от Земли объектов, таких, как Плутон и комета Чурюмова-Герасименко, Харон и Церера. Интересно, что будет еще через 50 лет?

Найдите пару минут, чтобы насладиться просмотром 25 по-настоящему захватывающих фотографий Земли и Луны из космоса.

Эту фотографию Земли сделали астронавты космического корабля «Аполлон 11» 20 июля 1969 года.

Запущенные человечеством космические аппараты наслаждаются видом на Землю с расстояния в тысячи и миллионы километров.


Снято Suomi NPP, американским метеорологическим спутником, управляемым NOAA.
Дата: 9 апреля 2015 года.

НАСА и NOAA создали это композитное изображение, используя фотографии, полученные с метеорологического спутника Suomi NPP, который вращается вокруг Земли 14 раз в сутки.

Их бесконечные наблюдения позволяют нам отслеживать состояние нашего мира при редком положении Солнца, Луны и Земли.

Снято космическим аппаратом для наблюдения за Солнцем и Землёй DSCOVR.
Дата: 9 марта 2016 года.

Космический аппарат DSCOVR сделал 13 изображений лунной тени, бегущей по Земле во время полного солнечного затмения 2016 года.

Но чем больше мы углубляемся в космос, тем больше завораживает нас вид Земли.


Снято космическим аппаратом «Розетта».
Дата: 12 ноября 2009 года.

Космический аппарат «Розетта» предназначен для исследования кометы 67P/Чурюмова-Герасименко. В 2007 году он совершил мягкую посадку на поверхность кометы. Основной зонд аппарата завершил свой полёт 30 сентября 2016 года. На этой фотографии виден Южный полюс и освещённая солнцем Антарктида.

Наша планета похожа на блестящий голубой марбл, окутанный тонким, почти невидимым слоем газа.


Снято экипажем корабля «Аполлон-17»
Дата: 7 декабря 1972 года.

Экипаж космического корабля «Аполлон-17» сделал эту фотографию под названием «The Blue Marble» («синий марбл») во время последнего пилотируемого полёта к Луне. Это один из самых распространяемых снимков всех времён. Он снят на расстоянии примерно в 29 тыс. км от поверхности Земли. В верхней левой части изображения видна Африка, а в нижней – Антарктида.

И она дрейфует в одиночестве в черноте космоса.


Снято экипажем «Аполлон-11».
Дата: 20 июля 1969 года.

Экипаж в составе Нила Армстронга, Майкла Коллинза и Базза Олдрина сделал этот снимок в ходе полёта на Луну на расстоянии около 158 тыс. км от Земли. В кадре видна Африка.

Почти в одиночестве.

Примерно два раза в год Луна проходит между спутником DSCOVR и его главным объектом наблюдений – Землёй. Тогда мы получаем редкую возможность взглянуть на дальнюю сторону нашего спутника.

Луна – холодный каменный шар, в 50 раз меньший, чем Земля. Она наш крупнейший и ближайший небесный друг.


Снято Уильямом Андерсом в составе экипажа космического корабля «Аполлон-8».
Дата: 24 декабря 1968 года.

Знаменитая фотография «Восход Земли», сделанная с космического корабля «Аполлон-8».

Согласно одной из гипотез, Луна образовалась после того, как протоземля столкнулась с планетой размером с Марс около 4,5 миллиардов лет назад.


Снято Lunar Reconnaissance Orbiter (LRO, Лунный орбитальный зонд).
Дата: 12 октября 2015 года.

В 2009 году НАСА запустило автоматическую межпланетную станцию LRO, изучающую покрытую кратерами поверхность Луны, но воспользовавшись моментом, аппарат сделал эту современную версию фотографии «Восход Земли».

Начиная с 1950-х годов, человечество запускает в космос людей и роботов.


Снято аппаратом Lunar Orbiter 1.
Дата: 23 августа 1966 года.

Автоматический беспилотный космический аппарат Lunar Orbiter 1 сделал эту фотографию во время поиска места для высадки космонавтов на Луне.

Наши исследования Луны – смесь погони за технологическими завоеваниями...


Снято Майклом Коллинзом из экипажа «Аполлон-11».
Дата: 21 июля 1969 года.

«Eagle» – лунный модуль корабля «Аполлон-11» – возвращается с поверхности Луны.

и неуёмного человеческого любопытства...


Снято лунным аппаратом «Чанье 5-Т1» (Chang"e 5-T1).
Дата: 29 октября 2014 года.

Редкий вид обратной стороны Луны, сделанный лунным зондом Китайского национального космического управления.

и поиска экстремальных приключений.

Снято экипажем корабля «Аполлон-10».
Дата: май 1969 года.

Это видео сняли астронавты Томас Стаффорд, Джон Янг и Юджин Сернан во время испытательного полёта к Луне на корабле «Аполлон-10» (без посадки). Получить подобное изображение «Восхода Земли» возможно лишь из движущегося корабля.

Всегда кажется, что Земля недалеко от Луны.


Снято зондом «Клементина 1».
Дата: 1994 год.

Миссия «Клементина» была запущена 25 января 1994 года, в рамках совместной инициативы НАСА и Командования воздушно-космической обороны Северной Америки. 7 мая 1994 года зонд вышел из-под контроля, но ранее передал это изображение, в котором видна Земля и северный полюс Луны.


Снято станцией «Маринер 10».
Дата: 3 ноября 1973 года.

Сочетание двух фотографий (на одной – Земля, на другой – Луна), сделанных автоматической межпланетной станцией НАСА «Маринер-10», которая была запущена к Меркурию, Венере и Луне с помощью межконтинентальной баллистической ракеты.

тем удивительнее выглядит наш дом...


Снято космическим аппаратом «Галилео».
Дата: 16 декабря 1992 года.

На пути к изучению Юпитера и его спутников космический аппарат НАСА «Галилео» сделал это композитное изображение. Луна, яркость которой примерно в три раза ниже яркости Земли, находится на переднем плане, ближе к зрителю.

и тем более одиноким он кажется.


Снято космическим аппаратом «Near Earth Asteroid Rendezvous Shoemaker» («NEAR Shoemaker»).
Дата: 23 января 1998 года.

Космический аппарат НАСА NEAR, отправленный в 1996 году к астероиду Эрос, сделал эти изображения Земли и Луны. На Южном полюсе нашей планеты видна Антарктика.

В большинстве изображений не точно отображено расстояние между Землёй и Луной.


Снято автоматическим зондом «Вояджер-1».
Дата: 18 сентября 1977 года.

Большинство фотографий Земли и Луны – композитные изображения, составленные из нескольких снимков, так как объекты находятся далеко друг от друга. Но выше вы видите первую фотографию, в которой наша планета и её естественный спутник запечатлены в одном кадре. Снимок сделал зонд «Вояджер-1» на пути к своему «большому туру» по Солнечной системе.

Лишь преодолев сотни тысяч или даже миллионы километров, затем вернувшись обратно, мы можем по-настоящему оценить расстояние, что пролегло между двумя мирами.


Снято автоматической межпланетной станцией «Марс-Экспресс».
Дата: 3 июля 2003 года.

Автоматическая межпланетная станция Европейского космического агентства «Макс-экспресс» (Mars Express), направляясь к Марсу, сделала этот снимок Земли на расстоянии миллионов километров.

Это огромное и пустое пространство.


Снято орбитальным аппаратом НАСА «Марс Одиссей».
Дата: 19 апреля 2001 года.

В этой инфракрасной фотографии, снятой с расстояния 2,2 млн. км, показано огромное расстояние между Землёй и Луной – около 385 тысяч километров или примерно 30 диаметров Земли. Космический аппарат «Марс Одиссей» (Mars Odyssey) сделал этот снимок, направляясь к Марсу.

Но даже вместе система Земля-Луна выглядит незначительной в глубоком космосе.


Снято автоматической межпланетной станцией НАСА «Юнона».
Дата: 26 августа 2011 года.

Космический аппарат НАСА «Юнона» сделала этот снимок во время своего почти 5-летнего путешествия к Юпитеру, где проводит исследование газового гиганта.

С поверхности Марса наша планета кажется просто очередной «звездой» в ночном небе, что озадачивали ранних астрономов.


Снято марсоходом программы Spirit Mars Exploration Rover.
Дата: 9 марта 2004 года.

Примерно через два месяца после посадки на Марс марсоход Spirit сделал фотографию Земли, выглядящей как крошечная точка. В НАСА говорят, что это «первый в истории снимок Земли, сделанный с поверхности другой планеты за пределами Луны».

Земля теряется в сияющих ледяных кольцах Сатурна .


Снято автоматической межпланетной станцией «Кассини».
Дата: 15 сентября 2006 года.

Космическая станция НАСА «Кассини» сделала 165 фотографий в тени Сатурна, чтобы составить это мозаичное изображение с подсветкой газового гиганта. Слева в изображении закралась Земля.

На расстоянии миллиардов километров от Земли, как саркастически заметил Карл Саган, наш мир – всего лишь «бледно-голубая точка», маленький и одинокий шар, на котором разыгрываются все наши триумфы и трагедии .


Снято автоматическим зондом «Вояджер 1».
Дата: 14 февраля 1990 года.

Этот снимок Земли – один из кадров в серии «портретов Солнечной системы», которые «Вояджер-1» сделал на расстоянии примерно 4-х миллиардов миль от дома.

Из выступления Сагана:

«Наверное, нет лучшей демонстрации глупого человеческого зазнайства, чем эта отстранённая картина нашего крошечного мира. Мне кажется, она подчёркивает нашу ответственность, наш долг быть добрее друг к другу, хранить и лелеять бледно-голубую точку – наш единственный дом».

Послание Сагана неизменно: есть лишь одна Земля, поэтому мы должны сделать всё, что в наших силах, чтобы защитить её, защитить в основном от самих себя.

Японский искусственный спутник Луны «Кагуя» (также известен как SELENE) снял это видео Земли, восходящей над Луной с ускорением в 1000% к 40-летию фотографии «Восход Земли», снятой экипажем «Аполлона-8».

Приближается момент, которого все астрономы мира с нетерпением ждали много лет. Речь идет о запуске нового космического телескопа «Джеймс Уэбб», который считается своего рода правопреемником знаменитого «Хаббла».

Зачем нужны космические телескопы

Прежде чем приступать к рассмотрению технических особенностей, давайте разберемся, зачем вообще нужны космические телескопы и какие преимущества они имеют перед комплексами, расположенными на Земле. Дело в том, что земная атмосфера, а особенно содержащийся в ней водяной пар, поглощает львиную долю излучения, идущего из космоса. Это, конечно, очень сильно затрудняет изучение далеких миров.

Но, атмосфера нашей планеты с ее искажениями и облачностью, а также шумы и вибрации на поверхности Земли не помеха для космического телескопа. В случае с автоматической обсерваторией «Хаббл» из-за отсутствия влияния атмосферы ее разрешающая способность примерно в 7–10 раз превосходит показатели телескопов, расположенных на Земле. Многие фото далеких туманностей и галактик, которые нельзя различить на ночном небе невооруженным глазом, были получены именно благодаря «Хабблу». За 15 лет работы на орбите телескоп получил более одного млн изображений 22 тыс. небесных объектов, среди которых многочисленные звезды, туманности, галактики и планеты. При помощи «Хаббла» ученые, в частности, доказали, что близ большинства светил нашей Галактики происходит процесс формирования планет.

Но запущенный в 1990 году «Хаббл» не вечен, а его технические возможности ограничены. Действительно, за последние десятилетия наука шагнула далеко вперед, и теперь можно создать гораздо более совершенные устройства, которые способны приоткрыть многие тайны Вселенной. Именно таким аппаратом станет «Джеймс Уэбб».

Возможности «Джеймса Уэбба»

Как мы уже убедились, полноценное изучение космоса без таких аппаратов, как «Хаббл», невозможно. Теперь постараемся понять концепцию «Джеймса Уэбба». Данный аппарат представляет собой орбитальную инфракрасную обсерваторию. Иными словами, ее задачей будет исследование теплового излучения космических объектов. Вспомним, что все тела, твердые и жидкие, нагретые до определенной температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемых телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.

Среди главных задач будущего телескопа – выявление света первых звезд и галактик, которые появились после Большого взрыва. Это чрезвычайно сложно, так как движущийся в течение миллионов и миллиардов лет свет претерпевает существенные изменения. Так, видимое излучение той или иной звезды может быть полностью поглощено пылевым облаком. В случае с экзопланетами все еще труднее, так как эти объекты чрезвычайно малы (по астрономическим меркам, конечно) и «тусклы». У большей части планет средняя температура редко превышает 0°C, а в ряде случаев она может опускаться ниже –100°C. Обнаружить такие объекты очень сложно. Но аппаратура, установленная на телескопе «Джеймс Уэбб», позволит выявлять экзопланеты, температура поверхности которых достигает 300 К (что сравнимо с земным показателем), находящиеся дальше 12 астрономических единиц от своих звезд и удаленные от нас на расстояние до 15 световых лет.

Новый телескоп был назван в честь второго руководителя NASA. Джеймс Уэбб был у руля космического ведомства США в период с 1961 по 1968 годы. Именно на его плечах лежал контроль над выполнением первых в США пилотируемых запусков в космос. Он сделал большой вклад в реализацию программы «Аполлон», целью которой была высадка человека на Луну.

Всего можно будет наблюдать планеты, расположенные у нескольких десятков звезд, «соседствующих» с нашим Солнцем. Причем «Джеймс Уэбб» сможет увидеть не только сами планеты, но и их спутники. Иными словами, нас может ожидать революция по части изучения экзопланет. И, возможно, даже не одна. Если же говорить о Солнечной системе, то и здесь могут быть новые важные открытия. Дело в том, что чувствительная аппаратура телескопа сможет обнаружить и изучить объекты системы, имеющие температуру –170° С.

Возможности нового телескопа позволят понять многие процессы, происходящие на заре существования Вселенной – заглянуть в сами ее истоки. Рассмотрим этот вопрос более детально: как известно, звезды, которые находятся на расстоянии 10 световых лет от нас, мы видим именно такими, какими они были 10 лет назад. Следовательно, расположенные на удалении более 13 млрд световых лет объекты мы наблюдаем в том виде, какими они являлись почти сразу после Большого взрыва, который, как считается, произошел 13,7 млрд лет назад. Приборы, установленные на новом телескопе, позволят увидеть на 800 миллионов дальше, чем «Хаббл», установивший рекорд в своей время. Так что можно будет увидеть Вселенную, какой она была всего лишь через 100 миллионов лет после Большого взрыва. Возможно, это перевернет представления ученых об устройстве Вселенной. Остается только дождаться начала работы телескопа, которое намечено на 2019 год. Предполагается, что аппарат будет эксплуатироваться в течение 5–10 лет, так что времени для новых открытий будет предостаточно.

Общее устройство

Для запуска «Джеймса Уэбба» хотят использовать ракету-носитель «Ариан-5», созданную европейцами. Вообще, несмотря на доминирующую роль космического ведомства США, проект можно назвать международным. Сам телескоп был разработан американскими компаниями Northrop Grumman и Ball Aerospace, а всего участие в программе приняли эксперты из 17 стран мира. Кроме специалистов из США и ЕС значительный вклад также внесли канадцы.

После запуска аппарат будет находиться на гало-орбите в точке Лагранжа L2 системы Солнце – Земля. Это означает, что, в отличие от «Хаббла», новый телескоп не будет вращаться вокруг Земли: постоянное «мелькание» нашей планеты могло бы помешать проводить наблюдения. Вместо этого «Джеймс Уэбб» будет обращаться вокруг Солнца. При этом для обеспечения эффективной связи с Землей он будет перемещаться вокруг светила синхронно с нашей планетой. Удаление «Джеймса Уэбба» от Земли достигнет 1,5 млн км: из-за такого большого расстояния его не получится модернизировать или отремонтировать как «Хаббл». Поэтому надежность ставится во главу угла всей концепции «Джеймса Уэбба».

Но что же собой представляет новый телескоп? Перед нами космический аппарат, весящий 6,2 тонны. Чтобы было понятно, вес «Хаббла» составляет 11 тонн – почти в два раза больше. При этом «Хаббл» был намного меньше по своим размерам – его можно сравнить с автобусом (новый телескоп сравним по длине с теннисным кортом, а по высоте – с трехэтажным домом). Самой большой частью телескопа является противосолнечный щит, имеющий длину 20 и ширину 7 метров. Он похож на огромный слоеный пирог. Для изготовления щита была использована особая специальная полимерная пленка, покрытая тонким слоем алюминия с одной стороны и металлическим кремнием с другой. Пустоты между слоями теплового щита заполняет вакуум: это усложняет передачу тепла в «сердце» телескопа. Целью данных шагов является защита от солнечных лучей и охлаждение сверхчувствительных матриц телескопа до –220° C. Без этого телескоп будет «ослеплен» инфракрасным свечением своих деталей и о наблюдении далеких объектов придется забыть.

Больше всего в глаза бросается зеркало нового телескопа. Оно необходимо для фокусировки пучков света - зеркало их выпрямляет и создает четкую картину, при этом цветовые искажения убираются. «Джеймс Уэбб» получит основное зеркало, диаметр которого составляет 6,5 м. Для сравнения, аналогичный показатель у «Хаббла» равен 2,4 м. Диаметр основного зеркала для нового телескопа выбран неспроста – именно столько необходимо для измерения света самых далеких галактик. Нужно сказать, что от размера площади зеркала (в нашем случае он составляет 25 м²), собирающего свет от далеких космических объектов, зависит чувствительность телескопа, а также его разрешающая способность.

Для зеркала «Уэбба» использован особый тип бериллия, представляющий собой мелкий порошок. Его помещают в контейнер из нержавеющей стали, после чего прессуют в плоскую форму. После удаления стального контейнера кусок бериллия разрезают на две части, делая заготовки зеркала, каждая из которых используется для создания одного сегмента. Каждый из них стачивают и полируют, а затем охлаждают до температуры –240 °C. Затем происходит уточнение размеров сегмента, его окончательная полировка, а также нанесение золота на переднюю часть. В конце сегмент подвергают повторным испытаниям при криогенных температурах.

Учеными было рассмотрено несколько вариантов того, из чего может быть сделано зеркало, но в конечном итоге специалисты остановили свой выбор на бериллии – легком и относительно твердом металле, стоимость которого весьма высока. Одной из причин данного шага стало то, что бериллий сохраняет свою форму в условиях криогенных температур. Само зеркало по форме напоминает круг – это позволяет максимально компактно фокусировать свет на детекторах. Имей «Джеймс Уэбб», например, овальное зеркало, изображение было бы вытянутым.
Основное зеркало состоит из 18 сегментов, которые раскроются после вывода аппарата на орбиту. Если бы оно было цельным, то разместить телескоп на ракете «Ариан-5» было бы просто физически невозможно. Каждый из сегментов шестиугольный, что позволяет использовать пространство наилучшим образом. Элементы зеркала имеют золотой цвет. За счет позолоты обеспечивается наилучшее отражение света в инфракрасном диапазоне: золото будет эффективно отражать ИК-излучение с длиной волны от 0,6 до 28,5 микрометра. Толщина золотого слоя составляет 100 нанометров, а общий вес покрытия равен 48,25 грамма.

Перед 18-ю сегментами на специальном крепеже установлено вторичное зеркало: оно будет принимать свет главного зеркала и направлять его на научные инструменты, расположенные в задней части аппарата. Вторичное зеркало намного меньше основного и имеет выпуклую форму.

Как и в случае со многими амбициозными проектами, цена телескопа «Джеймса Уэбб» оказалось выше, чем предполагалось. Изначально эксперты планировали, что космическая обсерватория обойдется в 1,6 млрд долларов, однако новые оценки говорят, что стоимость может возрасти до 6,8 млрд. Из-за этого в 2011 году от проекта даже хотели отказаться, однако потом было решено вернуться к его реализации. И сейчас «Джеймсу Уэббу» ничего не угрожает.

Научные инструменты

Для изучения космических объектов на телескопе установлены следующие научные инструменты:

- NIRCam (камера ближнего инфракрасного диапазона)
- NIRSpec (спектрограф ближнего инфракрасного диапазона)
- MIRI (прибор среднего инфракрасного диапазона)
- FGS/NIRISS (датчик точного наведения и устройство формирования изображения в ближнем инфракрасном диапазоне и бесщелевой спектрограф)

Телескоп «Джеймс Уэбб» / ©wikimedia

NIRCam

Камера ближнего инфракрасного диапазона NIRCam – основной блок формирования изображения. Это своего рода «главные глаза» телескопа. Рабочий диапазон камеры – от 0,6 до 5 микрометров. Снимки, сделанные ею, будут впоследствии изучаться другими инструментами. Именно при помощи NIRCam ученые хотят увидеть свет от самых ранних объектов Вселенной на заре их формирования. Кроме этого, за счет инструмента будут изучены молодые звезды нашей Галактики, создана карта темной материи и многое другое. Важная особенность NIRCam – наличие коронографа, позволяющего увидеть планеты вокруг далеких звезд. Это станет возможным благодаря подавлению света последних.

NIRSpec

При помощи спектрографа ближнего инфракрасного диапазона можно будет собирать информацию, касающуюся как физических свойств объектов, так и их химического состава. Спектрография занимает очень много времени, однако при помощи технологии микрозатворов можно будет проводить наблюдения за сотней объектов на площади неба 3×3 угловых минуты. Каждая ячейка микрозатворов NIRSpec имеет крышку, которая открывается и закрывается под влиянием магнитного поля. Ячейка имеет индивидуальное управление: в зависимости от того, закрыта она или открыта, информация об исследуемый части неба предоставляется или же, наоборот, блокируется.

MIRI

Прибор среднего инфракрасного диапазона работает в диапазоне 5–28 микрометров. Данное устройство включает в себя камеру с датчиком, который имеет разрешение 1024×1024 пикселя, а также спектрограф. Три массива мышьяко-кремниевых детекторов делают MIRI самым чувствительным прибором в арсенале телескопа «Джеймс Уэбб». Предполагается, что с помощью прибора среднего инфракрасного диапазона удастся различить рождающиеся звезды, многие ранее неизвестные объекты пояса Койпера, красное смещение очень далеких галактик, а также загадочную гипотетическую планету X (она же девятая планета Солнечной системы). Номинальной рабочей температурой для MIRI являются 7 К. Одна лишь пассивная система охлаждения не способна ее обеспечить: для этого используются два уровня. Сначала с помощью пульсационной трубы телескоп охлаждается до 18 К, а потом температура понижается до 7 К при помощи теплообменника с адиабатическим дросселированием.

FGS/NIRISS

FGS/NIRISS состоит из двух приборов – датчика точного наведения и устройства формирования изображения в ближнем инфракрасном диапазоне и бесщелевого спектрографа. Фактически NIRISS дублирует функции NIRCam и NIRSpec. Работающее в диапазоне 0,8–5,0 микрометров устройство будет обнаруживать «первый свет» от далеких объектов, наводя на них оборудование. NIRISS также пригодится для обнаружения и изучения экзопланет. Что же касается датчика точного наведения FGS, то при помощи этого оборудования будет наводиться сам телескоп, чтобы иметь возможность получить более качественные изображения. Камера FGS позволяет формировать изображение из двух смежных участков неба, размер которых составляет 2,4×2,4 угловых минуты каждый. Она также считывает информацию 16 раз в секунду с небольших групп пикселей размером 8×8: этого хватает для выявления соответствующей опорной звезды с вероятностью в 95% в любой точке неба, включая высокие широты.

Установленная на телескопе аппаратура позволит иметь качественную связь с Землей и передавать научные данные со скоростью 28 Мбит/с. Как мы знаем, не все исследовательские аппараты могут похвастаться такой возможностью. Американский зонд «Галилео», например, передавал информацию со скоростью всего лишь 160 бит/с. Это, впрочем, не помешало ученым получить огромный массив информации о Юпитере и его спутниках.

Новый космический аппарат обещает стать достойным правопреемником «Хаббла» и позволит ответить на вопросы, которые остаются тайной за семью печатями до сегодняшнего дня. Среди возможных открытий «Джеймса Уэбба» – обнаружение миров, похожих на Землю и пригодных для обитания. Данные, полученные телескопом, могут быть полезны для проектов, рассматривающих возможность существования инопланетных цивилизаций.

Сегодня в 11:24

Вот таким ученые впервые «увидели» Марс
51 год назад, 14 июля 1965 года, космическая станция Mariner 4 приблизилась к Марсу и впервые за всю историю человечества сделала несколько снимков другой планеты. Для фотографирования пришлось использовать большую аналоговую камеру, которая была смонтирована в нижней части аппарата. После того, как камера фотографировала, изображение отправлялось в виде цифрового кода на Землю. После получения этого кода на Земле его нужно было пропустить через декодировщик. Работа этого устройства занимала несколько часов.
Но это были первые в истории человечества изображения Марса, и сотрудники NASA не хотели ждать. Поэтому было решено декодировать изображение своими силами, вручную.

Поскольку код оттенков черного и белого цветов для получаемого кода был известен, специалисты приняли решение раскрасить полученное сообщение карандашами, с цветами от желтого до коричневого. Поэтому получилось так, что первое в мире изображение Марса было не фотографией, а раскрашенным вручную эскизом.


Увеличенный участок изображения

На снимке показан участок поверхности Марса вблизи экватора. С этого ракурса изображение выглядит так, словно его получили, находясь на поверхности Красной планеты. Но на самом деле «склон» в середине кадра - это округлый край планеты. Вот черно-белое изображение, которое дает понять реальное положение аппарата.

Mariner 4 - автоматическая межпланетная станция. Она предназначена для проведения научных исследований Марса с пролётной траектории, передачи информации о межпланетном пространстве и о пространстве около Марса. Предусматривалось получение снимков поверхности и проведение эксперимента по радио-затмению планетой сигнала со станции для получения информации об атмосфере и ионосфере. Головная организация по проектированию, изготовлению и испытаниям - Лаборатория реактивного движения NASA (Jet Propulsion Laboratory или JPL). Разработка отдельных систем выполнялась различными промышленными организациями и высшими учебными заведениями.


Так выглядели Mariner 3 и 4. Внизу - не пушка, как может показаться, а видеокамера (Изображение: NASA)

Этот аппарат стал первым космическим аппаратом, который сделал снимки другой планеты с близкого расстояния и передал их на Землю. Mariner 4 сделал 21 полную фотографию Марса и 1 неполную. Неполная фотография была получена из-за того, что Марс закрыл аппарат, радиосвязь с Землей прервалась. Это произошло с 14 на 15 июля.

Как и в случае с Венерой, снимки атмосферы и поверхности которой человечество смогло получить через несколько лет после сближения Mariner 4 с Красной планетой, фотографии Марса позволили перейти от домыслов о строении поверхности к фактам и теориям. Миф о каналах на поверхности Марса , невольными авторами которого являются астрономы Джованни Скиапарелли и Персиваль Лоуэлл, существовал очень долгое время. Он послужил причиной того, что ученые и обыватели долгое время считали каналы творением рук марсиан. Скиапарелли, наблюдая за Марсом, назвал обнаруженные линии итальянским словом «canali», которое обозначает любые протоки (как естественного так и искусственного происхождения), и может переводиться на английский как «channels», «canals» или «grooves» (каналы, искусственные каналы или борозды). При переводе его работ на английский использовалось слово «canals», употребляемое в английском языке для обозначения каналов искусственного происхождения. Сам он в последствии не уточнял, что именно имел в виду. Но уже мало кто подвергал сомнению обитаемость Марса: кто-то ведь должен был создать эти каналы планетарного масштаба.


Созданная в 1962 году специалистами военно-воздушных сил США карта Марса демонстрировала наличие каналов на его поверхности. Эта карта использовалась NASA для планирования маршрута Mariner. Прямоугольниками отмечены места, сфотографированные камерами Mariner 4

Но аппарат не увидел никаких каналов - ни рукотворных, ни природных. Фотографии и данные, предоставленные инструментами станции показали, что Марс - это сухая и холодная планета с отрицательной температурой поверхности. Планету пронизывает космическое излучение - у нее нет ионосферы для защиты от частиц высокой энергии. Mariner 4 не нашел никаких следов присутствия цивилизации на Марсе. Поэтому в 1965 году миф о наличии каналов на поверхности планеты удалось развеять.

Сейчас, спустя полвека, у человека достаточно инструментов для изучения Марса. На его поверхности трудятся Curiosity и Oppotunity. На орбите находится сразу несколько космических аппаратов, включая Mars Reconnaissance Orbiter и Mangalyaan. Все это позволяет тщательно изучать Марс, делая интересные открытия. Например, орбитальные аппараты помогли узнать о периодическом появлении жидкой воды на поверхности Красной планеты.

Начало этому изучению положил Mariner 4. Его 50-летний юбилей совпал с датой пролета станции New Horizons мимо Плутона.

Всего полвека назад ученые разрисовывали полученные из космоса закодированные изображения карандашами.А сейчас астрономы получают детальные изображения удаленных от Земли объектов, таких, как Плутон и комета Чурюмова-Герасименко, Харон и Церера. Интересно, что будет еще через 50 лет?