Линейные элементы электрической цепи примеры. Основные определения. Линейные электрические цепи постоянного тока. Упражнения и задачи

Введение

Электрическая цепь – это совокупность соединён-ных друг с другом источников энергии и нагрузок, по которым может протекать электрический ток.

Изображение электрической цепи называется схемой замещения электрической цепи или просто электрической схемой .

Рассмотрим характерные участки цепи:

- Ветвь – участок электрической цепи, в котором ток имеет одно и то же значение. Элементы ветви соединены между собой последовательно;

- Узел – место соединения трёх или более ветвей;

Место соединения ветвей обозначается точкой (обязательно – если ветви пересекаются).

- Контур – любой замкнутый путь в цепи.

Например, в схеме на рисунке 1.1, пять ветвей, три узла, шесть контуров. Убедитесь в этом самостоятельно, проверьте себя.

Соединение сопротивлений

Во многих случаях расчёт электрической цепи можно упростить, путём преобразования её из сложного вида в более простой. При этом уменьшается число узлов, ветвей либо и то и другое.

Необходимое условие преобразования: токи и напряжения в остальных частях схемы, не подвергающих-ся преобразованию, не изменяются. Такое преобразование называется эквивалентным .

а) Последовательное соединение сопротивлений

Последовательное соединение – это такое, при ко-тором во всех элементах цепи течёт одинаковый ток. Элементы ветви соединены последовательно (рис. 1.6).

Такую ветвь можно заменить одним резистором с сопротивлением R экв, равным сумме сопротивлений всех резисторов.

R экв = = R 1 +R 2 +R 3 +…+R n

Эквивалентное сопротивление при таком соедине-нии всегда больше сопротивления любого из элементов. Если все сопротивления равны

R 1 = R 2 = R 3 =…= R, то R экв = nR

Для проводимостей G формула будет выглядеть так:

Напряжение на зажимах ab равно сумме напряжений на каждом элементе ветви.

б) Параллельное соединение сопротивлений

Параллельное соединение сопротивлений – это такое соединение, при котором ко всем элементам цепи приложено одинаковое напряжение.

Параллельно соединены элементы между двумя узлами (рисунок 1.7).

Ток I в неразветвлённой части равен сумме токов в каждом элементе.

I = I 1 = I 2 + I 3 +…+ I n

Эквивалентная проводимость в этом случае равна сумме проводимостей всех элементов:

G экв = = G 1 + G 2 + G 3 +…+ G n

Для сопротивлений R формула будет выглядеть так:

Как видите, формулы симметричны: при последова-тельном соединении складываются сопротивления, а при параллельном – проводимости.

Эквивалентное сопротивление при таком соедине-нии всегда меньше сопротивления любого из элементов.

Если все сопротивления равны R 1 = R 2 = R 3 =…= R, то

Ток в любой ветви пропорционален проводимости этой ветви.

в) Смешанное соединение сопротивлений

Смешанное соединение сопротивлений – это такое соединение, которое можно представить в виде параллельного и последовательного.

На первый взгляд кажется, что любую схему соединения элементов можно представить в виде смешанного соединения и найти эквивалентное сопротивление путём преобразования параллельных и последовательных участков. Однако бывают случаи, когда соединение элементов не является смешанным. Примером такого случая может служить распространённая в электронике мостовая схема , показанная на рисунке 1.8.

Как найти сопротивление между точками a и d? После нескольких попыток упростить схему, легко убе-диться, что здесь нет участков ни с последовательным, ни с параллельным соединением. Для этого нужно приме-нить преобразование, описанное в следующем параграфе.

г) Преобразование «Звезда-треугольник»

Существует возможность эквивалентного преобра-зования треугольника сопротивлений, показанного на ри-сунке 1.9, в трёхлучевую звезду (рисунок 1.10).

При преобразовании одной схемы в другую, напря-жения и токи, как при любом эквивалентном преобразова-нии, не изменяются.

Формулы для преобразования из треугольника в звезду:

Формулы для преобразования из звезды в треугольник:

R ab = R a + R b + R a R b /R с

R ac = R a + R c + R a R c /R b

R bc = R c + R b + R c R b /R a

Если все сопротивления равны, то легко убедиться, что сопротивления в треугольнике в три раза больше, чем в звезде.

Теперь вернёмся к мостовой схеме на рисунке 8. Можно преобразовать в ней треугольник abc в звезду. Получим схему на рисунке 1.11.

В этой схеме сопротивления треугольника R 1 , R 2 , R 3 преобразованы в звезду R a , R b , R c .

Теперь не вызывает затруднения найти сопротивле-ние R ad . Для этого нужно найти последовательные соеди-нения Rb-R4 и Rc-R5, затем параллельное соединение двух получившихся и затем - последовательное соедине-ние с R a .

Также и в других подобных случаях преобразование «звезда-треугольник» может быть незаменимым.

Идеальный источник тока

Свойства идеального источника тока:

1) Внутреннее сопротивление идеального источника тока бесконечно: r = ∞;

2) Ток через идеальный источник тока всегда равен J и не зависит от сопротивления нагрузки R;

4) Для идеального источника тока невозможен режим холостого хода (т. к. при r = ∞, U= Jr = ∞);

5) Идеальный источник тока невозможно преобразо-вать в идеальный источник ЭДС.

Идеальных источников тока и напряжения не существует, однако, во многих случаях, источник энергии можно считать идеальным. При r « R можно считать источник идеальным источником ЭДС, а при r » R – идеальным источником тока.

Соединение источников ЭДС

Несколько последовательно соединённых источников ЭДС можно заменить одним эквивалентным источником, как показано на рисунке 1.14.

Внутреннее сопротивление эквивалентного источ-ника R экв, как обычно при последовательном соединении, равно сумме внутренних сопротивлений всех источников.

R экв = R 1 + R 2 + R 3

Напряжение эквивалентного источника ЭДС равно алгебраической сумме источников. При совпадении направлений – знак «+», в противном случае – знак «-». В данном случае:

Е экв = Е 1 - Е 2 + Е 3

В случае идеальных источников ЭДС, очевидно, все сопротивления равны нулю и R экв = 0.

Параллельное соединение идеальных источников ЭДС невозможно по определению. В случае реальных ис-точников аналогично: несколько параллельно соединён-ных источников ЭДС можно заменить одним эквива-лентным источником, как показано на рисунке 1.15.


Внутреннее сопротивление эквивалентного источ-ника R экв, определяется как обычно при параллельном соединении. Эквивалентная проводимость равна сумме проводимостей всех источников.

G экв = = G 1 + G 2 + G 3 , R экв = 1/ G экв

Эквивалентная ЭДС определяется по следующей формуле (в математике обычно используется термин «средневзвешенное значение»):

Глава 3 Законы Кирхгофа

Законы Кирхгофа являются фундаментальными в электротехнике и позволяют применять их в любой схеме – для постоянного или переменного тока. Законы эти непосредственно следуют из закона сохранения энергии.

Первый закон Кирхгофа (закон для узлов)

В узле электрической цепи арифметическая сумма токов равна нулю .

При этом втекающие токи считаются с одним знаком, а вытекающие – с другим.

Часто закон формулируется так: в узле сумма втекающих токов равна сумме вытекающих .

Например, - на рисунке 1.19:

I 1 + I 2 + I 3 + I 4 = 0

(cчитаем положительным направление от узла)

I 1 + I 3 + I 4 = I 2

Напоминание – каждый ток может быть положи-тельным или отрицательным. Если все токи втекают, значит, какие-то из них отрицательны.

Интересно, что этот закон может быть применён не только для узла, как обычно принято, но и для плоскости и даже в пространстве.

Например, если схему пересечь линией, то сумма токов с одной стороны равна сумме токов с другой стороны. Таким же образом можно пересечь плоскостью 3-мерную схему – закон действует и тут.

Второй закон Кирхгофа (закон для контуров)

В контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений.

Рассмотрим пример, поясняющий этот закон, для контура на рисунке 1.20.

Выберем произвольно направления токов.

Выбираем направление обхода контура, например, - по часовой стрелке.

Если направление ЭДС совпадает с направлением обхода контура, - то ЭДС записывается со знаком «+», если же противоположно – со знаком «-».

Аналогично: если направление тока совпадает с направлением обхода контура, то падение напряжения IR берётся со знаком «плюс», если противоположно – со знаком «минус».

Таким образом, для данного примера:

Е 1 - Е 2 = I 1 R 1 + I 3 R 3 - I 4 R 4 - I 2 R 2

Законов Кирхгофа

Как было сказано, при помощи законов Кирхгофа можно рассчитать любую цепь, никаких ограничений на законы Кирхгофа нет, они действуют во всех случаях без исключения.

Рассмотрим пример (рисунок 1.21) – определить все токи в схеме при известных сопротивлениях и параметрах источников энергии. Схема достаточно сложна, чтобы рассчитывать её, к примеру, методом наложения.

Задача решается путём составления системы линей-ных уравнений по законам Кирхгофа и её решения.

Так как в схеме неизвестных семь токов, т. е. семь неизвестных (ток источника J задан), то необходимо составить семь уравнений. Причём, уравнения должны быть независимы, что известно из курса математики.

Составляем уравнения по первому закону Кирхгофа. В схеме пять узлов, следовательно, можно составить пять уравнений.

I 1 - I 2 - I 6 = 0

I 1 + I 3 + I 4 = 0

I 2 - I 3 + I 5 = 0

I 4 + I 7 + J = 0

I 5 - I 6 + I 7 + J = 0

Однако, одно из уравнений не является независи-мым и может быть получено линейной комбинацией других. Таким образом, по первому закону Кирхгофа можно составить четыре уравнения.

В общем случае: если число узлов равно q, то по первому закону Кирхгофа можно составить (q-1) уравнения.

В данном случае можно исключить любое уравне-ние по своему усмотрению. Например, последнее уравне-ние содержит 4 переменные и является более сложным.

Остальные три уравнения нужно составить по второму закону Кирхгофа.

Данная схема имеет 12 контуров (убедитесь в этом). Из составленных 12 уравнений только три будут незави-симыми. Какие уравнения выбрать? Следует использо-вать такие правила:

Для ветвей, содержащих источники тока, уравнения не составляются (таким образом, для составления уравнений осталось 7 контуров);

В независимые контура должны войти все ветви схемы;

В каждый новый контур (в каждое новое уравнение) должна войти хотя бы одна новая ветвь;

Первое время это кажется не совсем понятным, но на практике контура обычно выбираются в виде «ячеек», т. е. контуров, не содержащих внутри себя ветвей. На рисунке 21 они показаны числами 1, 2, 3.

Выбираем произвольно направления обхода каждого контура (в данном примере – все против часовой стрелки) и записываем уравнения.

Е 1 + Е 3 = I 1 R 1 + I 2 R 2 + I 3 R 3

Е 4 = -I 3 R 3 + I 4 R 4 - I 5 R 5 + I 7 R 7

Е 2 - Е 3 = - I 2 R 2 + I 5 R 5 + I 6 R 6

Таким образом, получаем систему из 7 уравнений:

При правильном составлении уравнений, в любом случае число независимых уравнений будет равно числу неизвестных токов, точнее: числу неизвестных величин, т. к., в принципе, в задании могут быть неизвестными другие величины – сопротивления или напряжения.

Метод двух узлов

Метод двух узлов является частным случаем метода узловых напряжений. Как очевидно из названия, он используется в схемах, имеющих только два узла – тогда этот метод будет оптимальным. В этом случае составляется только одно уравнение. Для примера рассмотрим схему на рисунке 1.24.

Считаем нулевым потенциал узла 0. В данном случае никаких общих проводимостей нет, есть только собственная проводимость и узловой ток узла 1.

G 11 = G 1 + G 2 + G 3 + G 4

J 11 = - E 1 G 1 + J + E 2 G 4

Уравнение: U 1 G 11 = J 11

Затем определяем токи в ветвях. Подсчитайте для сравнения: сколько уравнений будет в системе при расчёте схемы методом контурных токов.

Двухполюсники

Двухполюсник – обобщённое название любой схемы, рассматриваемой относительно двух выводов (полюсов) (рисунок 1.25).

Если двухполюсник содержит внутри источники энергии, то он называется активным , если не содержит – пассивным .

Типичными активными двухполюсниками являются реальные источники ЭДС и тока.

Теорема об активном двухполюснике .

Активный двухполюсник можно заменить эквивалентным источником ЭДС (эквивалентным генератором), ЭДС которого равна напряжению холостого хода на выходе двухполюсника, а внутреннее сопротивление равно входному сопротивлению двухполюсника (рисунок 26).

I кз = E/r = U хх /R вх

Входное сопротивление R вх – внутреннее сопротивление 2-полюсника между полюсами. При этом нужно учитывать внутренние сопротивления источников энергии.

Обычно в литературе используется термин «эквивалентный генератор », что не вполне точно, т. к. под генератором понимается только источник ЭДС, но не источник тока. Поэтому в данном пособии используется название «эквивалентный источник ».

Глава 1 Основные понятия переменного тока

Переменный ток – это ток, изменяющийся во вре-мени. Практически в технике используются периодиче-ские напряжения и токи.

Рассмотрим основные параметры периодических токов и напряжений, которые присущи всем периодиче-ским процессам.

- Мгновенное значение – значение напряжения u(t) и тока i(t) в данный момент времени;

- Период – наименьший промежуток времени T , по истечении которого функция тока или напряжения повторяет своё мгновенное значение;

- Частота – величина обратная периоду. В физике обычно обозначается буквой ν, в технике – буквой f;

Частота измеряется в Герцах – 1 Гц = 1/с = с -1

- Угловая частота (или циклическая частота ) ω – показывает какой угол (в радианах) проходится в секунду;

По аналогии с движением по окружности период составляет 360 0 или 2π радиан. Таким образом, ω показывает, какая часть периода проходится в секунду.

ω = 2πf = 2π/Т

ω измеряется в рад/с или с -1 (но не в Герцах!)

Перечисленные основополагающие величины хорошо известны из физики средней школы. Рассмотрим некоторые новые параметры, часто используемые в электротехнике.

- Среднее значение за период (постоянная составляющая ) – определяется следующим образом:

Пример показан на рисунке 2.1

Для периодической функции, симметричной относи-тельно оси времени, U 0 = 0.

- Действующее значение тока (напряжения) – численно равно значению постоянного тока (напряжения), которое в сопротивлении за период Т выделяет столько же тепла, сколько при тех же условиях выделяет переменный ток (напряжение). Называется также среднеквадратичным значением и обозначается, как и постоянный ток – без индекса: U или I.

В ряде случаев не важны форма напряжения, период, частота и др. параметры, а важна лишь энергия или мощность, которая выделяется в нагрузке.

Действующее значение является одним из основных параметров переменного тока.

Наиболее распространённым видом переменного тока по многим причинам является синусоидальный ток .

Рассмотрим его параметры.

- Мгновенное значение :

u(t) = U m sin (ωt+ψ u)

i(t) = I m sin (ωt+ψ i)

- Амплитуда U m (I m)– максимальное значение;

ω – угловая частота ;

- Фаза (или полная фаза ): ψ(t) = ωt + ψ – угол в радианах, соответствующий моменту времени t;

- Начальная фаза - ψ u (ψ i) – угол в радианах в начальный момент времени при t = 0;

Синус и косинус – напоминаем – отличаются только начальной фазой, Синусоидальный ток с тем же успехом можно называть косинусоидальным.

- Действующее значение U (I);

Выведем формулу.

Найдём интеграл:

Второй интеграл равен нулю, так как косинус – чётная функция на периоде Т.

Таким образом:

Аналогично:

Часто студенты ошибаются, говоря, что действующее значение всегда в √2 раз меньше амплитудного. Запомните – это справедливо только для синусоидального тока !

- Средневыпрямленное значение U ср.

Среднее значение функции, симметричной относительно оси t, равно нулю. Поэтому для синусоидального тока используют параметр средневыпрямленное значение (среднее за полпериода).

Для синусоидального тока U ср = 2U m /π ≈ 0,637 U m

Векторов

Действия с синусоидальными величинами, очевид-но, намного сложнее, чем с постоянными. Для переменно-го тока используют свои специальные методы расчёта. Рассмотренные ниже методы расчёта предполагают, что все токи и напряжения имеют одну и ту же частоту ω. При различных частотах разных источников энергии эти методы работать не будут.

Одним из методов является представление токов и напряжений в виде векторов.

Пусть имеется ток - i(t) = I m sin (ωt+ψ i)

Представим его в виде радиус-вектора (рисунок 2.2)

Длина вектора равна амплитудному или действую-щеему значению I. Угол, образуемый вектором с осью t, равен начальной фазе ψ i . Угол отсчитывается как обычно в тригонометрии: от оси абсцисс против часовой стрелки. В данном примере ψ i > 0.

Вектор вращается против часовой стрелки с угловой частотой ω.

Как известно, синус – проекция вращения вектора единичной длины на ось ординат при вращении его против часовой стрелки с частотой ω.

Аналогично: мгновенное значение i(t) - проекция вращения вектора длиной I на ось ординат при вращении его против часовой стрелки с частотой ω.

Таким же образом можно представить несколько токов или напряжений. Суммой их будет вектор, равный сумме векторов (рисунок 2.3).

Пусть имеются два тока:

i 1 (t) = I m1 sin (ωt+ψ 1)

i 2 (t) = I m2 sin (ωt+ψ 2)

Суммой их является вектор I (рисунок 2.3)

i(t) = I m sin (ωt+ψ)

Действуют все математические правила действий с векторами. Все вектора вращаются против часовой стрелки с частотой ω, взаимное их расположение при этом не меняется.

Если нет необходимости определять мгновенные значения, то один из векторов можно направить произвольно, главным является взаимное расположение векторов, сдвиг фаз между ними.

То же самое действует и в отношении напряжений. Также можно использовать амплитудные или действую-щие значения.

Комплексные числа.

Символический метод расчёта

Другим методом расчёта является символический метод – представление векторов в виде комплексных чисел.

Комплексное число (назовём здесь его Z) имеет действительную и мнимую части. Назовём их R и X. Запись числа в алгебраической форме:

Z = R+jX ,

Где j = √-1– «мнимая единица». j 2 = -1. В математике также обозначается не j, а буквой i.

Комплексное число может быть представлено векто-ром (или точкой) на комплексной плоскости, где по оси ординат откладывается действительная часть, а по оси абсцисс – мнимая часть (рисунок 2.4).

Именно так в дальнейшем будут обозначаться сопротивления:

R – активное сопротивление;

X – реактивное сопротивление;

Существует также показательная форма записи комплексных чисел:

Z = ‌‌Ze jφ ‌

Перевод из одной формы в другую производится, используя формулы Эйлера:

e jφ = cos φ + j sin φ

e -jφ = cos φ - j sin φ

Ещё одна форма записи – тригонометрическая:

Z = Z cos φ + j Z sin φ

Формулы перевода из одной формы в другую имеют вид:

φ = arctg X/R R = Z cos φ X = Z sin φ

Z = R + jX

Аналогично в символической (комплексной) форме записывается ток и напряжение:

İ = I e jψ i , Ú = U e jψ u

Выражение для комплексов тока и напряжения обычно записываются через действующие значения, но могут быть также записаны и через амплитудные:

İ m = I m e jψ i , Ú m = U m e jψ u

Пояснения к обозначениям. Может возникать путаница при одинаковых обозначениях, например: I – «комплекс тока» и I – «действующее значение тока». То же касается Z и U. Поэтому для символического обозначения комплексного числа нужно использовать другое обозначение. Для функции времени – напряжения и тока – используется обозначение с точкой вверху. Сопротивление Z не является функцией времени, поэтому обозначать его Ż ошибочно. Для сопротивления принято для комплекса обозначение с подчёркиванием снизу: Z .

Для операций сложения (вычитания) удобна запись комплекса в алгебраической форме, для умножения (деления) – в показательной. При выполнении расчётов вручную, часто приходится преобразовывать одну форму в другую, что является довольно громоздким и трудоёмким.

Активное сопротивление в цепи переменного тока

Рисунок 2.5 - Резистор в цепи переменного тока

На рисунке 2.5 показана простейшая цепь с резисто-ром, подключённым к синусоидальному напряжению.

U R (t) = U m sin (ωt+ψ u) = i(t) R

i R (t) = U m /R sin (ωt+ψ u) = I m sin (ωt+ψ i)

I m =U m /R или, для действующих значений, I = U/R – закон Ома.

В комплексной форме закон Ома: Ú = İ Z

В данном случае - Z = R , Ú = İ R

Комплексное сопротивление в этой цепи является чисто действительным числом, мнимая часть сопротивле-ния равна нулю – Х = 0 и R называется активным сопротивлением .

Угол φ = ψ u -ψ i – называется сдвигом фаз между током и напряжением .

В цепи с активным сопротивлением R сдвиг фаз между током и напряжением равен нулю:

φ = 0, ψ u = ψ i

Вектора тока и напряжения совпадают по направлению. Совпадают также формы тока и напряжения.

Глава 5 Резонанс

Резонанс напряжений

Рассмотрим цепь с последовательным соединением резистора, катушки и конденсатора (рисунок 2.28).

Полное сопротивление цепи:

Z = R+jX = R+j(X L -X C)

Соотношения для определения токов и напряжений уже рассмотрены неоднократно, поэтому детально приводить их не имеет смысла. Векторные диаграммы показаны на рисунках 2.29 и 2.30.

На рисунках показаны варианты при X L X C . Возможен вариант, когда X L =X C и φ = 0. Такое явление в электрической цепи, содержащей L и C, при котором сдвиг фаз между током и напряжением равен нулю, называется резонансом . При резонансе цепь, несмотря на наличие реактивных элементов, ведёт себя как активное сопротивление (рисунок 2.31).

Электрическая цепь, в которой возможен резонанс, называется колебательным контуром . В данном случае, при последовательном соединении, схема называется последовательным колебательным контуром резонансом напряжений .

Условие резонанса: X L =X C => ωL=1/ωC

При заданных L и C резонанс возможен на одной частоте, называемой резонансной частотой ω 0:

Свойства схемы на частоте резонанса:

Полное сопротивление Z = R;

Ток в цепи максимальный I = I max =U/I;

Реактивные сопротивления равны. Подставив из формулы частоту резонанса, получим:

ρ называется волновым или характеристическим сопротивлением ;

Напряжения на L и C равны: U L =U C = X L I = ρI

Общее напряжение цепи: U = U R = RI

Важный момент: напряжения на реактивных элементах могут быть больше общего напряжения цепи, если ρ>R.

Величина Q = ρ/R = U L /U = U C /U называется добротностью колебательного контура. Q (не путать с реактивной мощностью) показывает во сколько раз напряжение на реактивных элементах больше напряжения на резисторе;

Частотная характеристика колебательного контура показана на рисунке 2.32. С ростом частоты X L линейно возрастает, X С обратно пропорционально убывает, а Z имеет минимум на частоте резонанса ω 0 .

.

Зависимость тока от частоты I = f (ω) - показана на рисунке 2.33. При постоянном напряжении ток максимален на частоте ω 0 .

На рисунке 2.34 показана фазо-частотная характе-ристика – зависимость сдвига фаз между током и напря-жением от частоты φ(ω). На частоте резонанса ω 0 сдвиг фаз равен нулю. При ω < ω 0 цепь носит индуктивный характер и φ < 0, при φ > ω 0 – ёмкостной и φ > 0.

Резонанс токов

Аналогично рассмотрим цепь с параллельным соединением резистора, катушки и конденсатора (рисунок 2.35).

Как обычно, при параллельном соединении, удобно использовать проводимости, а не сопротивления.

Полная проводимость цепи:

Y = G - jB = G - j(B L -B C)

Векторные диаграммы при B C < B L и B C > B L показаны на рисунках 2.36 и 2.37.

Такая схема называется параллельным колебатель-ным контуром . Резонанс в такой цепи называется резонансом токов (рисунок 2.38).

Условие резонанса: B L = B C => 1/ωL=ωC

Формула для частоты резонанса аналогична:

Свойства схемы параллельного колебательного контура на частоте резонанса:

Полное сопротивление Z = R,

проводимость: Y = G;

Ток в цепи минимальный I = I min = UG;

Реактивные сопротивления и проводимости равны:

Токи через L и C равны: I L =I C ;

Добротность контура: Q = ρ/R = Y/G;

Полная мощность равна активной мощности:

Как видите, наблюдается полная аналогия с последовательным резонансом.

Частотные характеристики параллельного колеба-тельного контура показаны на рисунках 2.39 и 2.40. Они полностью аналогичны характеристикам последователь-ного колебательного контура, если заменить сопротивле-ния на проводимости, а ток на напряжение.

Фазо-частотная характеристика параллельного коле-бательного контура показана на рисунке 2.41.

Список использованной литературы

1 Л. А. Бессонов. Теоретические основы электротех-ники: Электрические цепи. - М.: Высшая школа, 1996

2 Ф. Е. Евдокимов. Теоретические основы электро-техники. - М.: Высшая школа, 1965

3 Касаткин А. С. Курс электротехники: Учеб. Для вузов. – М.: Высшая школа, 2007

Введение

Расчёт электрических цепей является одной из основных задач при изучении электротехники, а впослед-ствии – и электроники.

Наиболее простыми и распространёнными являются линейные цепи, то есть цепи с вольт-амперной характери-стикой в виде прямой.

Сначала изучается расчёт цепей постоянного тока, затем, более сложные цепи – переменного (синусо-идального) тока.

Под переменным током обычно понимают ток синусоидальной формы. В электроснабжении, в промышленных сетях это – основной вид тока, поэтому знание законов переменного тока и расчёта цепей переменного тока является необходимым для инженера.

Расчёт электрических цепей переменного тока более сложен, чем цепей постоянного тока. В этом случае, кроме активного сопротивления, появляются реактивные элементы: катушка индуктивности и конденсатор. В параметрах тока и напряжения, кроме амплитуды в расчётах необходимо учитывать также частоту и начальную фазу. Это значительно усложняет расчёты. В расчётах используются представление синусоидальных величин в виде векторов либо в виде комплексных чисел. Рекомендация студентам: иметь для расчётов инженер-ный калькулятор.

Раздел 1 Линейные цепи постоянного тока

Глава 1 Основные понятия и законы линейных электрических цепей постоянного тока

Для анализа и расчёта реальное электромагнитное устройство с происходящими в нём процессами заме-няется некоторым расчётным эквивалентом – электриче-ской цепью.

Фактически изучаются не реальные устройства, а их эквиваленты, которые, с определённой степенью точно-сти, являются отражением их реальных свойств.

5.Основные методы анализа линейных электрических цепей.

Значительно упрощают расчет методом контурных токов , так как он позволяет сократить число уравнений.

При расчёте этим методом полагают, что в каждом независимом контуре схемы течёт свой контурный ток. Уравнения составляют относительно контурных токов, после чего через них определяют токи ветвей.

Метод наложения : ток в любой ветви равен алгебраической сумме токов, вызываемых каждой из Э.Д.С. схемы в отдельности. Линейная электрическая цепь описывается системой линейных уравнений Кирхгофа. Это означает, что она подчиняется принципу наложения (суперпозиции), согласно которому совместное действие всех источников в электрической цепи совпадает с суммой действий каждого из них в отдельности.

Метод расчета электрических цепей, в котором за неизвестные принимают потенциалы узлов схемы, называют методом узловых потенциалов . Число неизвестных в методе узловых потенциалов равно числу уравнений, которые необходимо составить для схемы по I закону Кирхгофа. Метод узловых потенциалов, как и метод контурных токов, – один из основных расчетных методов. В том случае, когда п-1 < p (n – количество узлов, p – количество независимых контуров), данный метод более экономичен, чем метод контурных токов.

6. Причины возникновения и сущность переходных процессов.

Переход из одного стационарного состояния в другое происходит не мгновенно, а с течением времени, что обусловлено наличием в цепи накопителей энергии (индуктивностей катушек и ёмкостей конденсаторов). Магнитная энергия катушек и электрическая энергия конденсаторов скачком измениться не могут, т.к. для осуществления этого необходимы источники, имеющие бесконечно большую мощность. Процессы, сопровождающие этот переход, называются переходными .

7. Анализ переходных процессов во временной области. Классический метод

Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x (t ):

Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициенты a k > 0 и определяются параметрами пассивных элементов R , L , C цепи, а правая часть является функцией задающих воздействий.

В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения:

Ч
астное решение полностью определяется видом правой части f (t ) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид
обуславливается (принуждается) источниками электрической энергии и называется принужденной составляющей.

Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которые определяются коэффициентами дифференциального уравнения, и не зависит от правой части. Таким образом, любая искомая величина в переходном режиме

.

16.Активное реактивное и полное сопротивления. Треугольник сопротивлений

.

Из этого следует, что модуль комплексного сопротивления:

. (3.44)

Следовательно, z можно представить как гипотенузу прямоугольного треугольника (рис. 3.13) – треугольника сопротивлений, один катет которого равен R, другой - х.

При этом

, (3.45)

. (3.46)

Зная
или
, можно определить угол .

Знак угла в выражениях для мгновенного значения тока определяется характером нагрузки: при индуктивном характере нагрузки (
) ток отстаёт от напряжения на угол и в выражении для мгновенного значения тока угол записывают со знаком минус, то есть ; при емкостном характере нагрузки (
) ток опережает напряжение на угол и выражение мгновенного значения тока записывают со знаком плюс, то есть .

17. Резонанс напряжений. Коэфф. Мощности. Треугольник мощностей.

Соответствует случаю, когда
(рис. 3.16). При этом
(см. подробнее раздел 3.10).

Из формулы 3.41 можно сделать вывод, что мощности P, Q, S связаны следующей зависимостью:

. (3.47)

Графически эту связь можно представить в виде прямоугольного треугольника (рис. 3.17) – треугольника мощности, у которого имеются катет, равный Р, катет равный Q и гипотенуза S.

Отношение Р к S, равное
, называется коэффициентом мощности .

. (3.48)

На практике всегда стремятся увеличить
, так как реактивная мощность, которая всегда существует в цепи R, L, C, не потребляется, а используется лишь активная. Из этого можно сделать вывод, что реактивная мощность является лишней и ненужной.

21.Параллельное соединение индуктивно связанных элементов цепи

Две катушки с сопротивлениями R 1 и R 2 , индуктивностями L 1 и L 2 и взаимной индуктивностью М соединены параллельно, причем одноимённые выводы присоединены к одному и тому же узлу (рис. 4.7).

При выбранных положительных направлениях токов и напряжения получаем следующие выражения:

; (4.11)

; (4.12)

; (4.13)

где
(4.14)

В этих уравнениях комплексные напряжения
и
взяты со знаком плюс, так как положительные направления этих напряжений (выбранные сверху вниз) и тех токов, от которых эти напряжения зависят, ориентированы относительно одноименных выводов одинаково. Решив уравнения, получим

; (4.15)

; (4.16)

. (4.17)

Откуда следует, что входное комплексное сопротивление рассматриваемой цепи

. (4.18)

Рассмотрим теперь включение, при котором одноименные выводы присоединены к разным узлам, т. е. L 1 и L 2 присоединены к узлу разноименными выводами. В этом случае положительные направления напряжений взаимной индукции (выбранные сверху вниз) и тех токов, от которых они зависят, ориентированы относительно одноименных выводов неодинаково и комплексные напряжения
и
войдут в уравнения (4.12) и (4.13) со знаком минус. Для токов
получатся выражения, аналогичные (4.15-4.17), с тем отличием, что Z М заменяется на - Z М и входное сопротивление цепи

. (4.19)

25.Определение четырёхполюсника. Основные формы записи уравнений четырёхполюсника

В ряде случаев необходимо рассматривать электрические цепи с двумя входными и двумя выходными зажимами, в которых ток и напряжение на входе связаны линейными зависимостями с напряжением и током на выходе.

Такие цепи называются четырёхполюсниками . Они могут иметь сколь угодно сложную структуру, так как в процессе исследования цепи важно определить не токи и напряжения в отдельных ветвях, а только зависимости между входными и выходными напряжениями и токами.

Иногда четырёхполюсниками называют электрические аппараты и устройства, имеющие пару входных и пару выходных зажимов. К ним, например, относятся однофазные трансформаторы, участки линии электропередачи, мостовые диодные выпрямители, сглаживающие фильтры и прочее.

Условное изображение четырехполюсника показано на рис. 7.1.

О
дну пару выводов называют входными (обозначаются
), другую - выходными (обозначаются
).

Если четырёхполюсник не содержит источников электрической энергии, то он называется пассивным , а если содержит – активным .

Примером активного четырёхполюсника может служить электронный усилитель.

На схеме активный четырёхполюсник изображается в виде прямоугольника с буквой А. Пассивный четырёхполюсник обозначается буквой П, либо вообще не обозначается.

Если у четырёхполюсника рабочими являются обе пары зажимов, то он называется проходным .

Четырёхполюсник, по сути, является передаточным звеном между источником питания и нагрузкой. К входным зажимам
, как правило, подключают источник питания, к выходным зажимам
- нагрузку.

Зависимости между двумя напряжениями и двумя токами на входных и выходных выводах можно записать в различной форме.

Возможны следующие шесть форм записи уравнений пассивного четырёхполюсника:

Форма А (основная):

, (7.1)

, (7.2)

где A,D – безразмерные коэффициенты;

С – [См]= [Ом -1 ]

27. Метод эквивалентного генератора

В практических расчётах часто нет необходимости знать режимы работы всех элементов сложной цепи, но ставится задача исследовать режимы работы одной определённой ветви.

При расчёте сложной электрической цепи приходится выполнять значительную вычислительную работу даже в том случае, когда требуется определить ток в одной ветви. Объём этой работы в несколько раз увеличивается, если необходимо установить изменение тока, напряжения, мощности при изменении сопротивления данной ветви, так как вычисления нужно производить несколько раз, задаваясь различными значениями сопротивления.

В любой электрической схеме можно мысленно выделить какую-то одну ветвь, а всю остальную часть схемы, независимо от структуры и сложности, условно изобразить прямоугольником, который представляет собой так называемый двухполюсник.

Таким образом, двухполюсник - это обобщённое название схемы, которая двумя выходными зажимами (полюсами) присоединена к выделенной ветви. Если в двухполюснике есть источник Э.Д.С. или тока, то такой двухполюсник называют активным. Если в двухполюснике нет источника Э.Д.С. или тока, то его называют пассивным.

При решении задачи методом эквивалентного генератора (активного двухполюсника) необходимо:

1 . Мысленно заключить всю схему, содержащую Э.Д.С. и сопротивления, в прямоугольник, выделив из нее ветвь аb, в которой требуется найти ток (рис 2.13).

    Найти напряжение на зажимах разомкнутой ветви ab (в режиме холостого хода).

Напряжение холостого хода Uо (эквивалентное Э.Д.С. Еэ) для рассматриваемой цепи можно найти так:
.

Сопротивление R4 в расчёт не вошло, так как при разомкнутой ветви ab ток по нему не протекает.

3. Найти эквивалентное сопротивление. При этом источники Э.Д.С. закорачиваются, а ветви, содержащие источники тока, размыкаются. Двухполюсник становится пассивным.

Д ля данной схемы

.

4. Вычислить значение тока. Для данной схемы имеем:
.

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм .

Электрические цепи

– это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

– это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.


Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.


Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Настоящее пособие посвящено в основном рассмотрению электрических цепей, в которых сопротивления, индуктивности и емкости не зависят от значений и направлений токов и напряжений. Такие электрические цепи, как и сами элементы, из которых они состоят, называются линейными, так как напряжение и ток в каждом элементе связаны между собой линейным уравнением – алгебраическим или дифференциальным.

Действительно, в случае, если параметр R не зависит от u и i , то закон Ома (1.1) выражает линейную зависимость между напряжением и током.

Если L и С не зависят от u и i , то напряжение и ток связаны линейными дифференциальными уравнениями (1.4) в случае индуктивности и (1.8) в случае емкости.

Что касается активных элементов линейных электрических цепей, то условием линейности идеального источника напряжения является независимость величины ЭДС от тока, проходящего через источник, а условием линейности идеального источника тока является независимость тока от напряжения на его зажимах.

Реальные электротехнические и радиотехнические устройства, строго говоря, не подчиняются линейному закону. При прохождении тока через проводник выделяется тепло, проводник нагревается и его сопротивление изменяется. С изменением тока в катушке индуктивности с ферромагнитным сердечником соотношение между потокосцеплением и током, т. е. параметр L , не остается постоянным. В зависимости от диэлектрика в большей или меньшей степени изменяется и емкость конденсатора в функции от заряда (или приложенного напряжения). К нелинейным устройствам относятся, кроме того, электронные, ионные и полупроводниковые приборы, параметры которых зависят от тока и напряжения.

Если в рабочем диапазоне, на который рассчитывается то или иное устройство, т.е. при заданных ограниченных пределах изменений напряжения, тока и т.п., закон линейности с достаточной для практики степенью точности сохраняется, то такое устройство рассматривается как линейное.

Исследование и расчет линейных цепей сопряжены, как правило, с меньшими трудностями, чем исследование и расчет нелинейных цепей. Поэтому в тех случаях, когда линейный закон достаточно близко отражает физическую действительность, цепь рассматривается как линейная.

В радиоэлектронике и автоматике напряжение и ток, подводимые к цепи, принято называть воздействующей функцией или входным сигналом, а напряжение и ток, возникающие при этом в какой-либо интересующей нас части цепи, называют реакцией цепи или выходным сигналом (в литературе встречается также термин отклик (от английского «respons»)). Сигналы можно рассматривать как функции времени.

В линейной электрической цепи соблюдаются принципы наложения и пропорциональности сигналов.

Принцип наложения заключается в том, что если входным сигналам f 1вх (t ) и f 2вх (t ), порознь подводимым к цепи, соответствуют выходные сигналы f 1вых (t ) и f 2вых (t ), то суммарному входному сигналу f 1вх (t ) + f 2вх (t ) будет соответствовать выходной сигнал f 1вых (t ) + f 2вых (t ).

Принцип пропорциональности состоит в том, что входному сигналу Аf вх (t Аf вых (t ), где А - постоянный множитель.

Если с течением времени параметры и схема цепи сохраняются неизменными, то цепь называется инвариантной во времени.

Допустим, что заданная линейная цепь до момента t = 0 пассивна. Условие инвариантности цепи во времени означает, что если входному сигналу f вх (t ) соответствует выходной сигнал f вых (t ), то входному сигналу f вх (t+ t), запаздывающему по сравнению с первым на время t, будет соответствовать выходной сигнал f вых (t+ t).

Отсюда можно заключить, что для линейных электрических цепей, инвариантных во времени, выполняется следующее условие: дифференцирование или интегрирование входного сигнала влечет за собой дифференцирование или соответственно интегрирование выходного сигнала. Действительно, пусть по условию инвариантности входному сигналу f вх (t+ Dt ) соответствует выходной f вых (t+ Dt ). Если за входной сигнал принять , то по условию линейности и инвариантности цепи выходной сигнал будет равен: . Устремив Dt к нулю в пределе получим входной и выходной сигналы и .

Теоретические

Основы электротехники

Линейные электрические цепи постоянного тока

Методические указания к выполнению

расчётно – графической работы №1

для студентов специальности 140604“Электропривод и автоматика промышленных установок и технологических комплексов”

(направление 140600 – ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОМЕХАНИКА

и ЭЛЕКТРОТЕХНОЛОГИИ)

Красноярск 2008

Теоретические основы электротехники. Линейные электрические цепи постоянного тока. Методические указания к выполнению расчётно – графической работы № 1 для студентов специальности 140604 “Электропривод и автоматика промышленных установок и технологических комплексов” (направление 140600 – ЭЛЕКТРОТЕХНИКА, ЭЛЕКТРОМЕХАНИКА и ЭЛЕКТРОТЕХНОЛОГИИ)

Рассмотрен анализ линейных электрических цепей методами контурных токов, узловых потенциалов и методом эквивалентного генератора. Приведены примеры расчётов.

Составитель В.В. Кибардин – к.т.н., доц. каф. ЭГМП

Методические указания утверждены на заседании кафедры ЭГМП.

ВВЕДЕНИЕ

Данная работа оказывает помощь студентам, изучающим дисциплину «Теоретические основы электротехники», помогает усвоению раздела «Свойства и методы расчета линейных цепей с источниками постоянного напряжения и тока». Приведены теоретические сведения и примеры расчётов цепей постоянного тока.

Методические указания предназначены для студентов специальности 140604 всех форм обучения.

1. УКАЗАНИЯ ПО ОФОРМЛЕНИЮ ТИПОВЫХ РАСЧЁТОВ

В соответствии с ГОСТ 1494-77 “Электротехника”, стандартом предприятия СТП-КИЦМ-4-82, правилами, принятыми в электротехнике, пояснительная записка пишется на одной стороне стандартных листов формата А4 (297*210). Она должна содержать: титульный лист по принятому образцу; задание с исходными данными; текстовый материал и таблицу соответствия переменных задания и машинных переменных; результаты решения; графический материал. Схемы и потенциальные диаграммы необходимо выполнять с применением чертёжных принадлежностей, изображая элементы схем в соответствии с ГОСТом.

2. РАСЧЁТ ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

С ИСТОЧНИКАМИ ПОСТОЯННЫХ ЭДС И ТОКОВ

Основной задачей расчета электрических цепей является определение токов, напряжений и мощностей ветвей цепи по заданным их сопротивлениям R, проводимостям G и источникам электрической энергии E или J. Эти задачи имеют единственное решение, которое для линейных цепей может быть получено составлением и решением системы алгебраических уравнений с учётом законов Кирхгофа, Ома и Джоуля-Ленца. В общем случае имеем 2b линейно независимых уравнений, если цепь содержит b ветвей и q узлов. Иногда в рассматриваемой цепи имеется b ИТ ветвей, в которых содержатся идеализированные источники тока J , и b ИН ветвей, составленных только из идеализированных источников напряжения E , поэтому общее число неизвестных напряжений и токов уменьшается до


2b – b ИТ – b ИН.

На практике для анализа цепей применяют различные методы составления уравнений электрического равновесия, позволяющие уменьшить размерность исходной системы уравнений.

2.1. Анализ цепей по законам Кирхгофа

Методы формирования уравнений электрического равновесия цепи, основанные на непосредственном применении законов Кирхгофа, позволяют уменьшить число одновременно решаемых уравнений до b.

Первый закон Кирхгофа формулируется следующим образом: алгебраическая сумма токов ветвей, соединенных в узле, равна нулю

где с положительным знаком учитываются токи, направленные от узла.

Второй закон Кирхгофа: алгебраическая сумма напряжений на ветвях любого контура равна нулю

или в любом контуре алгебраическая сумма э.д.с. равна алгебраической сумме напряжений на сопротивлениях, входящих в этот контур

ΣRkIk = Ek , (3)

В этом уравнении положительные знаки принимаются для токов и э.д.с. , положительные направления которых совпадают с произвольно выбранным направлением обхода рассматриваемого контура.

При составлении уравнений по законам Кирхгофа рекомендуется придерживаться такой последовательности: сначала выполнить эквивалентные преобразования, выбрать произвольные положительные направления токов во всех ветвях электрической цепи, затем составить q – 1 уравнение на основании первого закона Кирхгофа и, наконец, составить

b – (q – 1) уравнения для контуров на основании второго закона Кирхгофа.

Получить независимые уравнения по первому и второму законам Кирхгофа, т.е. выбрать независимую систему сечений и контуров, можно при помощи дерева графа схемы, содержащего все узлы графа, но ни одного контура, и ветвей связи, дополняющих дерево до исходного графа.

Если граф содержит b ветвей и q узлов, то число ветвей дерева

d = q- 1 , а число ветвей связи k = b - (q-1). Для дерева образуется d главных сечений, каждое из которых состоит из ветвей связи и одной ветви дерева, и k главных контуров, каждый из которых состоит из ветвей дерева и только одной ветви связи. Уравнения, составленные по законам Кирхгофа для главных сечений и главных контуров, линейно независимы.

Следует помнить, что на графе электрической цепи ветви, содержащие идеальные источники тока, не показываются.

Например, для сложной электрической цепи (рис. 1) её граф представлен на рис. 2. Он содержит пять ветвей, следовательно необходимо записать пять уравнений: из них два на основании первого закона Кирхгофа (q – 1 = 3 – 1 = 2), остальные – на основании второго закона Кирхгофа.

Исходная система уравнений запишется в виде